
 Advanced search

Linux Journal Issue #41/September 1997

Features

RoboCar: Unmanned Ground Robotics by Kerry Kruempelstaedter
Students at the University of Colorado at Boulder use Linux on
two networked computers which provide the brains for their
entry in a robotic vehicle race.

Linux at Holt Public Schools by Mark Lachniet
WAN links and linux proxy servers form the basis of a computer
network for this Michigan public school system.

A Linux-based Lab for Operating Systems and Network Courses by
Richard Chapman and W.H Carlisle

Computer science students at Auburn University learn about
operating systems and networking using Linux in the computer
lab.

News & Articles

Using Linux in a Training Environment by B. Scott Burkett
Programming with XForms, Part 3: The Library by Thor Sigvaldason
Packet Radio under Linux by Jeff Tranter

Reviews

Product Review Empress RDBMD and Just Logic/SQL RDBMS by
Rob Wehrli
Product Review Megahedron—A 3D Graphics Environment by
Michael J. Hammel
Product Review SOLID Desktop 2.2 for Linux by Bradley J. Willson

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1
https://secure2.linuxjournal.com/ljarchive/LJ/041/2202.html
https://secure2.linuxjournal.com/ljarchive/LJ/041/2210.html
https://secure2.linuxjournal.com/ljarchive/LJ/041/2361.html
https://secure2.linuxjournal.com/ljarchive/LJ/041/0229.html
https://secure2.linuxjournal.com/ljarchive/LJ/041/2010.html
https://secure2.linuxjournal.com/ljarchive/LJ/041/2218.html
https://secure2.linuxjournal.com/ljarchive/LJ/041/2073.html
https://secure2.linuxjournal.com/ljarchive/LJ/041/2282.html
https://secure2.linuxjournal.com/ljarchive/LJ/041/2326.html

Book Review Beginning Linux Programming by Mark Shacklette
Book Review Linux Configuration and Installation, Second Edition
by Harvey Friedman

WWWsmith

Building an ISP Using Linux and an Intranet by Eric Harlow
At the Forge Speaking SQL by Reuven Lerner

Columns

Letters to the Editor
From the Editor
From the Publisher Atlanta Linux Showcase Report by Phil Hughes
and Todd Shrider
Stop the Presses Linux Grows Up by Phil Hughes
Linux Apprentice Introduction to Named Pipes by Andy Vaught
Linux Means Business Linux for Embedded Systems by Sandor
Markon & Kenji Sasaki
New Products
System Administration Quota: Managing Your Disk Space by Jan
Rooijackers
Kernel Korner The sysctl Interface by Alessandro Rubini
Best of Technical Support

Archive Index

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/041/2034.html
https://secure2.linuxjournal.com/ljarchive/LJ/041/2100.html
https://secure2.linuxjournal.com/ljarchive/LJ/041/2025.html
https://secure2.linuxjournal.com/ljarchive/LJ/041/2421.html
https://secure2.linuxjournal.com/ljarchive/LJ/041/2434.html
https://secure2.linuxjournal.com/ljarchive/LJ/041/2445.html
https://secure2.linuxjournal.com/ljarchive/LJ/041/2452.html
https://secure2.linuxjournal.com/ljarchive/LJ/041/2446.html
https://secure2.linuxjournal.com/ljarchive/LJ/041/2156.html
https://secure2.linuxjournal.com/ljarchive/LJ/041/0133.html
https://secure2.linuxjournal.com/ljarchive/LJ/041/2435.html
https://secure2.linuxjournal.com/ljarchive/LJ/041/0197.html
https://secure2.linuxjournal.com/ljarchive/LJ/041/2365.html
https://secure2.linuxjournal.com/ljarchive/LJ/041/2447.html
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Robocar: Unmanned Ground Robotics

Kerry Kruempelstaedter

Issue #41, September 1997

University of Colorado students are using Linux to control their robotic cars in a
race with vehicles from around the world.

The Association for Unmanned Vehicle Systems International (AUVSI) sponsors
a yearly robotic vehicle contest. Schools from around the world gather to see
whose vehicle will navigate an outdoor course the fastest and the farthest.
Vehicles have no prior knowledge of the layout of the course.

The course track is defined by white or yellow lines painted on the grass, and
the robot must stay within these lines. Obstacles of various sizes, sand traps,
deep grades and sharp curves occur along the way to keep things exciting. The
difficulty increases as the robot progresses down the course. In addition to
navigating the pathways, the robot must carry a 20 pound load and cannot
exceed a speed limit of five miles per hour. Each robot has three tries at
navigating the course, and the winner is chosen based on the time used and
distance traveled. Penalties are assessed for crossing lines and hitting
obstacles. So far no team has successfully navigated the full length of the
course.

This year's contest was held at Oakland University in Rochester, Michigan on
May 31st, June 1st and June 2nd. Rules for the 1997 contest can be found on
the Web at http://www.secs.oakland.edu/SECS_prof_orgs/PROF_AUVSI/
rules97.html.

Figure 1. Diagram of the Race Course

Robocar is the University of Colorado (CU) at Boulder's entry in this contest.
Starting with a child's electric car, our team added basic sensing and control
equipment as well as two computers running Linux and software specifically
designed for the AUVSI contest. Over the four years CU has entered this
contest, Robocar has changed significantly. This article documents the various

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1
https://secure2.linuxjournal.com/ljarchive/LJ/041/2202f5.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/041/2202f5.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/041/2202f5.jpg

systems of Robocar in this year's incarnation, its software architecture and
navigation algorithms.

The Mechanics

The basic frame of Robocar is a kid's vehicle, hacked apart—the kind of toy one
or two children can sit in and drive. We ripped out the wimpy motors that came
with the original toy and replaced them with big, beefy ones with chains and
gearing to improve drive power. We substituted computer controls for the
steering wheel and pedals and augmented its body structure. Not much
remains of the original vehicle except some framework and the outer plastic
shell.

An inverted metal “U” was welded to the car body above the former location of
the windshield and two cameras were mounted to it. The original windshield
was not used because it was too low to the ground and did not provide a large
enough field of view. A metal box used for housing various circuits is also
attached to the metal “U”.

Batteries fit snugly into the former seating area of the vehicle. Covering the
batteries is a wooden board which holds the competition load. Likewise, a
wooden platform has been added to the back of the car to carry our main
computer, a conventional desktop machine with a big monitor. Additional
equipment, including our smaller second computer, is stashed under the hood
in place of the original battery.

Overall, the car measures 30 inches wide, 54 inches long and 62 inches high
and weighs in excess of 200 pounds. Actually, the car's body has become a
huge, heavy hack after three years of adding features. We'll probably rebuild it
from scratch next year using lighter materials.

Robocar must withstand a fair amount of stress while traveling across the
bumpy course (grass, sand, simulated pavement, wooden ramps). Vibrations
need to be dampened to get clean, useful video—try driving down the road
while looking through a jiggling video camera some time, and you'll get a fair
approximation of Robocar's vision of the world. Besides, we don't want the
hard drives bouncing around all over the place; therefore, all four wheels have
shocks to help reduce the vibrations, and our mechanically fragile equipment is
mounted on foam.

Finally, we replaced the slippery, stiff plastic wheels that came with the car with
inflatable rubber tires to improve traction on the grass and the ramps. Robocar
plows right through sand traps on these tires. Running with the tires slightly
deflated helps absorb shock.

Figure 2. Picture of Robocar practicing. At this time we were using wall power to
conserve batteries and a joystick to manually select the motor power. It really is
following the lines by itself though. Our practice lines are impossible to miss
compared to the more subtle effects of spray paint on grass.

The Electrical System

This year, Robocar has large marine batteries that can easily power it for seven
or more hours of operation. The batteries are used in pairs and power all the
actuators, sensors and computers. These are deep cycle batteries; that is, they
are designed to withstand numerous complete draining and recharging cycles.
Each 12 volt battery can source 550 amps. Even though each battery lasts a
long time, we keep two spare sets on the sidelines for backup. Unfortunately,
the batteries are quite heavy—adding an extra 40 pounds each. The weight
trade-off is well worth the power gain, which should enable us to climb the
ramp that caused us so much grief in previous years.

Figure 3. A close up of one of the shocks

We have two circuits in the car: a 12 volt circuit and a 24 volt circuit. Power for
the noisy drive motors and CAN-AMP servo is provided on a separate circuit
from the digital devices. Relays switch the drive motors from forward to reverse
as well as cut power to the motors in emergencies. The diagram of the
electrical system provides more information.

If Robocar should ever go wildly out of control, a quick slap on one of the two
emergency stop buttons (one of which is a remote control) will quickly bring it
to a halt by disconnecting the motors from the batteries. Even though the car is
moving at a mere 5 miles an hour or less, it can still do a lot of damage to
objects and people. I have scars to prove it.

Actuators

Every robot relies on actuators to act upon its world. Robocar has three of
these:

1. Steering control is provided via a CAN-AMP. The steering CAN-AMP is one
of three nodes on our CAN (Controller Area Network). The other two are
an encoder wheel and the CAN-PC controller card. Servo behavior can be
completely controlled; for example, we can tell it to turn a certain distance
within a certain period of time and to decelerate gently before it gets
there. Two years ago, we used one of these to turn a single camera rapidly
from side to side without damage, because of the great number and
flexibility of the parameters to the CAN servo.

https://secure2.linuxjournal.com/ljarchive/LJ/041/2202f1.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/041/2202f1.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/041/2202f1.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/041/2202f4.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/041/2202f4.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/041/2202f4.jpg

2. Motor control is achieved through pulse width modulation (PWM) from a
computer to two DC drive motors. These 24 volt motors are extremely
powerful and have great torque. One afternoon, we took turns riding on
the car, and the motors easily pulled the car and a heavy (185 pound)
human passenger up a steep hill. We generate a PWM signal from two
cascading counter/timers that receive the same clock signal. The first is
set up to periodically generate a rising edge on its output and determines
the frequency of the PWM signal. The period of the signal does not
change. The output of the first counter/timer is connected to the gate on
the second counter/timer. The second counter/timer determines the duty
cycle of the PWM signal. A short count on this timer maps to a longer
fraction of the PWM period that is high and, thus, to more power being
sent to the motor.

3. Shadow-reducing head lamps are switched with a computer-controlled
relay. These lights improve the vision sensors' ability to spot the course
boundaries.

Figure 4. A nasty bird nest which also serves as the wiring for Robocar

Sensors

To perceive its environment, Robocar needs sensors. We have given it cameras
for detecting the track boundary lines painted in the grass, a scanning sonar for
obstacle avoidance and an encoder wheel for speed detection. Robocar has
some additional sensors for side projects which are not used during the
competition.

Vision is supplied from two standard video cameras fed through two Matrox
Meteor frame grabbers. We have two different Matrox cards: the Meteor and
the Meteor/RGB. Both can read from multiple cameras and grab high-
resolution 24-bit color images. The only difference is that the Meteor/RGB can
grab frames from a split-RGB source, whereas the regular Meteor cannot. Even
though we could plug two cameras into a single Meteor board, we are using
two boards to get 30 frames per second per camera. Matrox's Meteor boards
are inexpensive, reliable and well supported.

A single Panasonic sonar sensor mounted on top of a Futaba RC servo acts as
an obstacle detection device. It scans the area in front of the car, rotating back
and forth to cover a wider area. Using a single sonar has the advantage of
removing any possibility of cross-talk and of being able to look in any direction.
Using multiple statically-mounted sonar sensors would not give us this much
flexibility. The Futaba servo, like the drive motors of the vehicle, is controlled
using PWM.

https://secure2.linuxjournal.com/ljarchive/LJ/041/2202f7.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/041/2202f7.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/041/2202f7.jpg

An encoder wheel returns data to a speed sensor indicating how far it has
turned. Since we know the diameter of the wheel, we know how far it has
turned since last we checked. Thus, this sensor can compute our average speed
during that time. The sensor's interface to the encoder wheel is through a CAN-
PC board on our main computer. Robocar uses this sensor to ensure that it
stays under the 5 MPH speed limit.

In addition to being a competition vehicle, Robocar acts as a test bed for Kevin
Gifford's Ph.D. thesis, which is to develop an efficient navigation algorithm for
(possibly off-world) autonomous rovers. An additional set of sensors has been
added for this option: a GPS sensor and a “map” sensor. Using these, Robocar
always knows exactly where it is and where it wishes to go; it can also plan the
cheapest way of getting there.

The Trimble Series 4000 uses differential GPS and can make extremely accurate
measurements—+ or - 10 centimeters—compared to normal civilian GPS. It
comes with a base station, a receiver and radio modems. GPS information is
supplied over a serial line.

During Kevin's research, Robocar knows about its environment by using a map
sensor in addition to the competition and GPS sensors. The map sensor is
basically a topological map of the research field. With this knowledge, Robocar
can calculate the most efficient path to a set of destination coordinates.

In addition to the above sensors, we have a joystick for manually driving
Robocar to and from the course (or around the test field just for fun). Without
this, we would have to push or carry the heavy beast around—something we
prefer to avoid. The joystick is plugged into a generic sound card on our main
machine.

Computers

Two networked computers provide the brains for Robocar and the control for
sensors and actuators. Debian Linux version 1.2 is installed on both these
machines.

The first of these, Highlab, is a Pentium 166MHz with 16MB of RAM and a 1GB
disk. The three boards in Highlab for sensor and actuator control are:

1. An ML16-P analog and digital I/O card made by Industrial Computer
Source. The ML16-P is a low-quality, low-cost real-world interface for the
ISA bus. It has sixteen 8-bit ADCs (analog to digital converters), two 8-bit
DACs (digital to analog converters), eight digital output lines, eight digital
input lines, and three 16-bit counter timers. We use this card for PWM
motor control, e-stop, reverse and head-lamp relay toggling.

2. A CAN-PC card made by OmniTech for communicating to their CAN
devices (the encoder wheel for speed sensing and the big servo for
steering).

3. Two Matrox Meteor cards used for vision.

Highlab makes the high-level decisions and controls all of the actuators. It also
performs vision and speed sensing.

Flea, the second of the two computers on Robocar, is a PC/104 stack. The PC/
104 is an embeddable implementation of the common PC/AT architecture. It
consists of small (90 by 96 mm) cards which stack together. A PC/104 uses ISA
compatible hardware, although the connectors and pin-outs are different. Any
software that runs on a regular desktop machine will also run on a PC/104. Its
greatest advantage over a desktop machine, besides its compact size, is its
greatly reduced power consumption. For more information on the PC/104
standard, see http://www.controlled.com/pc104/

Flea consists of several modules: a motherboard (the CoreModule/486-II from
Ampro), an IDE floppy controller (the MiniModule/FI from Ampro), a digital I/O
card (the Onyx-MM from Diamond Systems) and an Ethernet card (the
MiniModule/Ethernet-II from Ampro). It has 16MB of memory and runs with a
single 20MB solid-state IDE drive (the SDIBT-20 from Sandisk).

Since Flea has no video card, it uses a serial terminal as its console. We needed
to patch the kernel to gain this ability, as it is not part of the normal kernel
distribution. The serial console patch can be located at ftp://ftp.cistron.nl/pub/
os/linux/kernel/patches /v2.0/linux-2.0.20-serial-cons-kmon.diff

The Onyx-MM features 48 digital I/O lines, 3 16-bit counter/timers, 3 PC/104
bus interrupt lines and an on-board 4MHz clock oscillator. Flea controls the
scanning sonar's servo with this card. Sebastian Kuzminsky's Linux driver for
this card can be found at ftp://ftp.cs.colorado.edu/users/kuzminsk/

Flea's task is simple; it turns the servo, pings the sonar and listens for the
response. When it has a complete sweep of the arc in front of the robot, it
processes and sends the information to Highlab.

Software Architecture

This year's software, running under the Linux OS, is significantly improved from
last year's, which ran under MS-DOS. Although the MS-DOS system worked fine
(we won third, first and fifth place in the previous three years), it was extremely
difficult to expand, ugly and monolithic. As soon as Sebastian finished
developing Linux drivers for all our unsupported equipment, we completely

removed any and all traces of MS-DOS from our systems and rewrote the code
from scratch.

Functionality has been modularized into two types of programs: a single
arbitrator which makes the decisions and controls the car, and sensors which
provide information about the world to the arbitrator. Sensors are derived
from a skeleton sensor and are easily created. You write the code to create a
suggestion, to interface to the hardware and to link to the sensor library. The
arbitrator and the sensors use a common configuration library which makes it
easy to parse configuration information from the command line and
configuration files.

Since the sensors and the arbitrator can run on any machine on the Robocar
network, it is simple to add and remove computers to and from the system as
needed. The arbitrator spawns sensors at startup using rsh. A simple command
protocol allows communication between the sensors and the arbitrator over
the network. The arbitrator can get and set a sensor's configuration, get a
single suggestion from a sensor, set a sensor's suggestion rate and kill a sensor.
Acknowledgments from the sensors are necessary, since we are using
unreliable UDP (User Datagram Protocol) as our networking protocol.

Sensors generate several types of suggestions for the arbitrator: an occupancy
grid, the current speed and (for Kevin's research only) a heading. Occupancy
grids are just a way of representing world information in a grid format. Our
occupancy grids are 6 meters wide and 3 meters high and have ten grid points
per meter. The car is centered in the middle at the bottom of the grid. Each
point of the grid can be marked with one of three values: good (it is okay for the
car to move to that spot), bad (the car should avoid that position) and
unknown. Not all sensors provide occupancy grids; those that do are only
looking for specific types of “badness”—track boundaries (vision sensors) and
obstacles (sonar sensor). In the future, we will probably allow the sensor to use
weights of badness instead of a single value, so that the arbitrator can better
choose between two “not-so-good” paths. Sensors send suggestions to the
arbitrator as fast as they can, at a specified rate or on demand via UDP. These
are not acknowledged by the arbitrator and can get dropped if the network
gets bogged down. This protects the arbitrator from sensors that send
suggestions too fast. Time stamps on the suggestions lets the arbitrator know
how old the suggestion is.

The user can configure and debug sensors and the arbitrator from nice menus
displayed using curses library routines. The arbitrator itself may wish to
configure the sensors; for example, it may wish to alter the suggestion rate for
a particular sensor or to change the type of filtering done by a sensor.

After spawning the sensors, the arbitrator waits for each sensor to connect to it
and then gathers configuration information from all of the sensors for later use
and display. Finally, it falls into a loop. Within the loop, the arbitrator selects
from all of the sensor file descriptors and standard input to gather suggestions
from the sensors and commands from the user. Using the suggestions, the
arbitrator makes a navigation decision and actuates.

Navigation Algorithms

We have several navigation algorithms to choose from and can switch among
them on the fly. However, we have found that the simplest and easiest one
works best. The Robocar needs to make only local decisions and does not need
to keep a map of its environment. It just needs to make quick use of the data
provided by its sensors.

Rather than looking at all the sensor information separately, the arbitrator
merges the suggestions together into one total suggestion. It then looks at the
occupancy grid portion of the total suggestion to find badness in relationship to
itself. Badness can be either a painted line or an obstacle—it doesn't really
matter to the robot which—and must be avoided. The robot looks left, then
right to find the left-most and right-most badness. It then tries to steer between
the two. If there is badness only on one side, it tries to give the badness wide
clearance—at least half the track.

This is one of many algorithms to which we can switch, but it seems to work
well and is fairly straightforward. Kevin, of course, uses different algorithms
which take into account current and desired position as well as surrounding
terrain. Our simple algorithm works well for the competition.

Conclusion

Working on the Robocar project has been a very rewarding and exciting
experience. There is nothing quite so pleasant as watching something you have
built and programmed move on its own. Switching to Linux has allowed us to
improve our robotics software and to use our favorite development tools. We
hope to do well in this year's contest as a result. But even if we do not, we will
have a good platform for next year and will have learned a little more about
building robots and robot navigation.

Contributors/Contacts

The Robocar Team

Robocar Race Results

https://secure2.linuxjournal.com/ljarchive/LJ/041/2202s1.html
https://secure2.linuxjournal.com/ljarchive/LJ/041/2202s2.html
https://secure2.linuxjournal.com/ljarchive/LJ/041/2202s3.html

Kerry Kruempelstaedter can be reached at kruempel@cs.colorado.edu or at
http://ugrad-www.cs.colorado.edu/~kruempel/. Since graduation, she has
greatly enjoyed working with robotics and is taking the summer off to work on
an autonomous aerial vehicle. She spends too much of her life spelling her
name to people over the phone.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/041/toc041.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Linux at Holt Public Schools

Mark Lachniet

Issue #41, September 1997

How a public school system in Michigan has used WAN links and Linux proxy
servers to upgrade its computer network.

Holt Public Schools is located in the mid-Michigan area and is comprised of
approximately 5,400 students, ranging from pre-school to 12th grade. We have
a wide area network of 10 schools and an administrative office building. Within
these schools are a total of about 900 workstations: some 600 Macintosh
machines (LC3s and Centris 610s) and around 300 Intel machines. The network,
as installed, was comprised of a number of 10MB/s Ethernet LAN segments
connected by 56K leased lines. The DSU/CSU units were controlled by Novell 4.x
file servers using Newport Systems LAN2LAN cards and routed only IPX traffic.
The Novell file servers provided NetWare services to the Intel machines and
AppleTalk services to the Macintosh machines.

Since 1993, the computer networking world has been turned upside down, and
we recognized the need to update our system. In addition to the need for
greater bandwidth for applications, getting Internet access to the classrooms
has become a must. Public schools have always been faced with tight financial
budgets and implementing a major change in a network is usually quite costly.
Because of these factors, our district was forced to examine alternative ways to
upgrade our system. Through the combination of two key technologies, spread
spectrum wireless WAN links and Linux proxy servers, we were able to provide
what our district wanted: a system that is highly functional and low in cost. In
fact, based on our financial calculations, the entire system (including the Linux
machine hardware) should pay for itself within 5 years, based solely on the
recurring costs of six leased lines.

There were two major problems in upgrading our network. The first was that
our WAN links were slow and very expensive. Using 56K DSU/CSUs, we were
able to pass GroupWise e-mail, do some management and replicate our Novell
directory services. At this speed, copying files was slow, and Internet access for

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

the entire district was unthinkable. To provide for more bandwidth, we
replaced our 56K lines with a wireless 4MB/s bridge unit from Pinnacle
Communications of Dayton, Ohio. The wireless links can transmit data at a rate
of 2MB/s on each channel simultaneously and function as an Ethernet bridge.

An Ethernet bridge, in its simplest form, is a device that will selectively forward
or drop a packet based on its destination. The bridge learns which network
devices (based on its unique MAC address) are on which network interface and
records the information into its internal tables. When a packet reaches the
bridge, the bridge looks at its destination. If the packet is destined for the
opposite side of the bridge, it is forwarded. If the packet is destined for a
network device on the same side of the bridge, it is ignored. In this way, the
bridge passes only packets that need to be sent and eliminates unnecessary
traffic between segments. The wireless bridge product we use performs this
exact function between an Ethernet segment and a wireless “virtual” network.
This makes network configuration very simple and efficient.

Originally, we used a routed 56K solution such as that shown in Figure 1. This
worked relatively well for our Novell network. However, it required that all of
the traffic be routed. This is fine for NetWare, which uses protocols such as RIP
to automatically configure routes. However, in order to pass TCP/IP data, it
would be necessary to break our class C range of IP addresses into a number of
smaller subnets. This would result in a net loss of available IP addresses and
add to the bandwidth problem.

With the wireless links, we were able to set up a much more flexible network.
Since the links can be configured as either point-to-point or multi-point, it was

https://secure2.linuxjournal.com/ljarchive/LJ/041/2210f1.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/041/2210f1.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/041/2210f1.large.jpg

possible to create a single, virtual-bridged radio network comprised of
numerous locations. At the education center, we have OMNI-directional
antennas which are configured as repeaters. Because the remote locations use
directional links and point directly at the education center, they cannot
communicate directly with one another. To alleviate this problem, the
education-center bridge is configured to forward all traffic not intended for its
own Ethernet LAN segment back out to the wireless network. Thus, while one
elementary school cannot communicate with another elementary school
directly, they can communicate by making an extra hop through the OMNI. This
happens transparently in the hardware and is unseen by the network devices.
With the exception of a single remote school (Dimondale), we were able to
connect every location into a single wireless network. We used a repeater at the
west campus area to connect this auxiliary school to the larger network. At this
location, there are essentially two different wireless links plugged into the same
hub. Although the link to Dimondale is actually a totally different wireless
network, it appears, logically, to be part of the larger wireless network. The
complete physical wireless network looks something like the picture in Figure 2.

With the bridging topology, we were able to maintain our Novell
communications while expanding our TCP/IP functionality. For our TCP/IP
services, we deployed a number of Linux proxy servers. These Linux servers are
Pentium computers, ranging from Pentium 90s to Pentium 150s. They have
between 32 and 64MB of parity RAM and IDE hard disks from 850MB to 2.1GB.
They each have two D-Link NE2000 compatible Ethernet cards. The machines
have a minimal Slackware 3.2 distribution installed, are configured as IP
Masquerading firewalls and act as Internet gateways for our remote LAN
segments. Also running on the servers is the Squid Internet Object Cache
software, which allows us to cache HTTP, FTP, GOPHER and WAIS data on the

https://secure2.linuxjournal.com/ljarchive/LJ/041/2210f2.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/041/2210f2.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/041/2210f2.large.jpg

server. Most of the other Linux software, such as login shells, FTP services, etc.
have been disabled or restricted to a single management machine.

Between IP Masquerading and the Squid Object Cache, we were able to provide
the necessary Internet services. With masquerading, we gave access to our 900
or so clients with only 7 true IP addresses. In addition, we can configure the
firewall to allow different types of access to different workstations. For
example, we might wish to configure the firewall in such a way as to restrict a
computer lab while allowing a teacher station access. Also, because of the
nature of the firewall, our clients are more or less unreachable by the outside
world, thereby conferring a certain amount of security. Using the standard
ipfwadm program, there are a number of possible configuration options.

Overall, the speed of the wireless links has been quite good. When the network
first went up, we began gathering information about the speed and reliability of
the links. To do this, a script was set up which runs a program called tcpspray to
transfer 100KB of data to each location and measure the amount of time it
takes to get there. The script runs constantly on a management station and
tests each of the links every 15 minutes. Below is the actual output of one of
our wireless links—in this case, between the education center and the senior
high school:

Tue May 27 18:19:35 EDT 1997 Sycamore/HS: Transmitted
102400 bytes in 0.551536 seconds (181.312 kbytes/s)

Running this same test to a machine connected via PPP on an external USR
28.8k, we had the following results:

Tue May 27 18:25:43 EDT 1997 PPP: Transmitted
102400 bytes in 47.041576 seconds (2.126 kbytes/s)

Admittedly, that PPP link should be running a little bit faster. I had expected to
see throughput more along the lines of 3K, or possibly 4KB/s. Lastly, to
compare it to another popular networking option, take a look at the throughput
attained by a 10MB/s LanCity cable modem which I have connected to my
personal Internet host:

Mon May 26 18:28:13 EDT 1997 Cable Modem: Transmitted
102400 bytes in 0.294357 seconds (339.724 kbytes/s)

Bear in mind that these figures don't give you the whole picture. For example,
the speed of the throughput varies from moment to moment by as much as
50%. All it takes is a split-second delay in the network to give a very poor
reading. The readings I have provided represent an average throughput. Also,
the speed of the computers sending and receiving the information makes quite
a difference. All the machines used for the above testing are running Linux, but
if they were not, the speed of the TCP/IP stack would also be a factor. In
addition, it's important to note that certain services have more data overhead

than others. Thus, performance might vary depending upon the service you are
using. FTP, for example, runs at roughly the same speed as a tcpspray test.

In addition to speed, controlling Internet access is important. As a public school
district, we need to have a certain amount of accountability as to what our
students do and see on the Internet. To this end, we have made the use of the
Squid Cache mandatory, allowing us to monitor the kinds of documents
accessed, as well as require a valid user name and password to access the
cache. By filtering all traffic for port 80 at the firewall, client workstations must
use the cache to get WWW documents. Squid allows for the use of htpasswd
style authentication, exactly like web server packages such as Apache. Using
this authentication method, we can manage user access to the cache and to the
World Wide Web. In addition, Squid allows us to configure access control lists,
which will disallow certain “known naughty” sites that might endanger the
innocence of our students.

At each of the individual LAN segments, we have a configuration similar to the
picture in Figure 3. The wireless link is plugged into a small hub, which is also
connected to the NetWare server and Linux box. The NetWare server is
responsible for routing the IPX/SPX traffic and the Linux box is responsible for
the TCP/IP traffic. All of the client workstations are configured for the 10.0.0.0
network and have their Linux box set as the default gateway. When a client

https://secure2.linuxjournal.com/ljarchive/LJ/041/2210f3.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/041/2210f3.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/041/2210f3.large.jpg

sends TCP/IP traffic, it goes through the Linux box, out through the wireless
link, to the education center and eventually out to the Internet.

On the Novell side, configuration is quite simple. We simply left the original
Ethernet card at its original settings and configured a second Ethernet card for
the wireless LAN. Naturally, I had to configure this second card with the
network number 3141, so I could call it the “Pi in the Sky”. We must all seek
humor where we can.

The proxy servers have been working quite well. Our first Linux proxy server,
which was based on kernel version 2.0.18, has run for months and never
crashed. Even with the ever-demanding (and ever-popular) PointCast traffic, it
has performed wonderfully. With Squid, all documents that pass through the
proxy are cached, allowing subsequent requests to come from the proxy server
at near-Ethernet speeds. This reduces traffic across our Internet connection, as
well as across the Internet in general. In a school situation, this works very well.
For example, when a teacher wants to visit a certain web site with the whole
computer lab, he simply views the pages the night before. When the class
comes in the next day, the documents are served very quickly, making it
possible for a whole class to browse the site at Ethernet speed. With the
combination of helpful utilities such as wget, teachers can recursively cache a
whole site with a simple shell command.

Using Linux has allowed us to put together a greatly improved network and
provide Internet access to all our workstations using limited resources. We
have increased our WAN bandwidth from a painfully slow 56K to a respectable
4MB/s. With the help of the Squid Internet Object Cache, we have become
responsible Internet citizens and reduced unnecessary net traffic. Now, we can
even call all of our e-mail airmail. None of this would have been possible
without the effort of the hundreds of people who contribute to Linux every day.
In education, in particular, Linux fits perfectly—it's cheap, it' s flexible and it's
powerful.

Mark Lachniet is a Network Systems Specialist for Holt Public Schools. Mark's
hobbies include disc golfing, “nerdin” and home brewing beer. Mark can be
contacted at lachniet@pilot.msu.edu. Mark maintains a small home page which
includes a tutorial on IP Masquerading, a HOWTO-in-progress on creating a
proxy server like the ones described above and other miscellaneous stuff. His
home page is accessible at http://scnc.holt.k12.mi.us/~lachniet/.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/041/toc041.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

A Linux-based Lab for Operating Systems and Network

Courses

Richard Chapman

W. Homer Carlisle

Issue #41, September 1997

Auburn University uses Linux as the OS for their computer labs dedicated to
teaching students about operating systems and networking.

This article describes our experiences installing and using a teaching laboratory
based on the Linux operating system. The lab is a platform for undergraduate
operating systems and networking education in the Department of Computer
Science and Engineering at Auburn University. We have deliberately made the
software and hardware environments of the lab quite heterogeneous, but
Linux has always been the workhorse of the lab. Linux was chosen primarily
due to the wide range of hardware supported, the sophistication of its kernel
and the availability of source code and documentation. We believe that “hands-
on” experience is an essential component of computer science education and
that most current curricula rely far too heavily on simulation when teaching
systems issues.

Teaching Systems Programming

Our primary motivation for building this laboratory was to not shortchange our
students when it comes to practical experience with systems programming. The
shortcomings we most desired to avoid are:

• Out-of-date technology—A good systems programming instructor must
be familiar with the state of the art, and more importantly, the state of
practice. A competent instructor should be aware of such things as
memory speeds and sizes, disk drive performance, network standards
and CPU performance. These things change rapidly, and far too often we
throw up our hands and say “I'll teach the fundamental concepts, but not

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

dirty my hands with implementation details.” Such thinking is
fundamentally flawed when applied to systems programming, since what
works and what does not work is fundamentally based on the economics
and technology that makes some solutions viable and others not.

• Too much reliance on simulation—Systems programming is inherently a
messy business. Machines can crash; device drivers can hang the system
or even the network; hardware can be damaged by poor programming or
incorrect wiring. There is a risk that students will use the systems lab to
crack other systems. Poorly written network software can result in
inadvertent denial of service to other legitimate users of the network.

• All these things make a dedicated systems laboratory very difficult to
accommodate in today's typical university computing environment of
networked Windows PCs and commercial Unix workstations. Systems
administrators don't want to put at risk a part of their network which is,
almost by definition, broken most of the time.

• Thus, systems programming courses often rely exclusively on the use of
simulators to provide students with some experience in systems
programming. The problem with this approach is that the real world is not
running on a simulator. Simulation adds an extra layer of complexity that
must be grasped by the novice, and also insulates the novice from the fact
that development tools may be primitive or nonexistent and the designer
is often responsible for building the design tools as well. Students need to
learn to build their own tools, to leverage the capabilities they have in
order to achieve the ends they need when developing new systems.

• Aversion to team exercises—We in the computer science and engineering
department at Auburn often ask our industrial contacts, “What should we
be teaching our students to prepare them for work at your firm?”
Inevitably, we are told that the important skills include teamwork and
experience with large systems. Because of the difficulties inherent in
assessing team performance and in managing the interpersonal issues
involved with team-based projects, most university exercises tend to be
individual activities based on small, or even toy systems. Perhaps the
underlying obstacle may be an unwillingness to depart from the
traditional lecture-and-examination method of teaching. Professors have
a term that is generally used to refer to team work—cheating.

• Security concerns—It is a fact of life that not all university students can be
trusted in the same ways that employees are trusted. As mentioned
above, some protections must be set up so that hacking does not
interfere with the work of other students or with that of university staff.
Further, physical precautions must be taken against the theft of
equipment available for public use. Unfortunately, these concerns seem
directly aimed at frustrating any attempt to provide students with “real”
systems programming experience, for which they may need root

privileges, and for which they will often need access to the inside of the
machine.

Figure 1.

A dedicated laboratory for systems programming courses, running Linux on
commodity hardware, isolated to some extent from the main campus network,
seemed to us to be a good way around most of these shortcomings.

Lab Configuration

The lab began in the late summer of 1995 with six Pentium 90 machines
running Red Hat Linux version 1.0. We made an effort to buy only hardware
that supported Linux: IDE disk drives and CD-ROM, SCSI tape backup and file
servers, ATI Mach 32 video cards, SVGA monitors. Hardware incompatibilities
caused several delays, as we attempted to show that Linux was competitive
with commercial Unix as a platform for instructional computing. These delays
seem to be a thing of the past, both due to our increasing familiarity with Linux
and to the non-stop efforts of the Linux development community.

The “PC lab running Unix” initially was regarded rather like the dancing bear:
People were impressed not that it worked well, but that it worked at all. Faculty
were amazed that we could run essentially the same set of tools on $2000
boxes as ran on their $4000-$8000 Unix workstations. Benchmarking and
practical experience on tasks ranging from document preparation to compiler
writing soon revealed that performance on these machines was comparable to
that achieved with workstations. Further, the fact that all OS source code was
available, and that the developers could be contacted directly (and generally
provided very helpful advice via e-mail) were big pluses. The machines went
through a shakedown period in the fall of 1995, in which any interested student
or faculty was granted access, but the machines were not used as part of any
formal course work.

Figure 2

Expansion

During the shakedown period, we attempted to attach virtually any peripheral
we could find to our Linux system and attempted to install Linux on a variety of
processors.

The initial six machine configuration was used to support a systems
administration course during the spring quarter of 1996, with teams of about
six students assigned to each machine. Students installed Linux, configured
networking, mounted file systems over the network, installed devices,

https://secure2.linuxjournal.com/ljarchive/LJ/041/2361f1.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/041/2361f2.jpg

developed device drivers and made minor kernel modifications. It was
becoming clear that with more machines, the lab could be a platform for most,
if not all, of our systems courses.

At about the same time, we scavenged a large number of 386 and 486-based
machines that were being surplussed as a large college of engineering
laboratory was upgraded, and while we found many broken computers, we
were able to build somewhere between 10 and 20 working systems, all capable
of running Linux. We wanted an environment that was varied and in which
hardware was plentiful (if not always state-of-the-art). These older machines
provided a platform that could be freely used without worry about damage by
any student interested in hacking. One such project included interfacing a color
Connectix QuickCam which exported pictures of the laboratory to the World
Wide Web and to a file server, thus providing both security and convenience at
a low cost.

Figure 3

Based on our preliminary results, we submitted a proposal to the National
Science Foundation (NSF) Instructional Laboratory Improvement program to
expand this lab, and to use it as our main platform for undergraduate
education in operating systems and networks. The NSF agreed to supply
$44,512 to purchase equipment, if Auburn University would provide a matching
$44,512. The total $89,024 was allocated toward purchase of the following
items:

• Sixteen additional Intel-based computers
• Fast Ethernet cards, cables and hubs
• Network analyzers
• Multimedia equipment
• Printers

We are currently in the process of acquiring this equipment and developing a
curriculum for introductory operating systems and networks courses based on
the Linux kernel.

For the introductory operating systems course, we currently use the Nachos
instructional operating system, developed at the University of California at
Berkeley. We start the students out with a very limited-capability kernel and
require them to extend the scheduling, file system, process management and
networking in various ways. This OS runs on a MIPS R2/3000 processor
simulator, running on top of Solaris on a SPARCstation. We hope to remove
most of these software layers by using Linux. We plan to augment the use of
our traditional textbook, Operating Systems Concepts by Galvin and

https://secure2.linuxjournal.com/ljarchive/LJ/041/2361f3.jpg

Silberschatz, with a Linux-specific text, such as Linux Kernel Internals, by Beck,
et al.

Figure 4

Systems Administration Course

A Unix systems administration course is currently being taught using the
laboratory. On the second class day students were required to choose a slot in
a table having rows reflecting tasks of a system administrator and columns
reflecting the hardware platforms available in the laboratory. The rows were
called “interest groups” and the columns were called “teams”. The interest
groups of the table were:

• Hardware group—responsible for hardware installation, maintenance,
upgrades.

• Software group—responsible for software installation, maintenance and
upgrade of system software.

• Network group—concentrating on networking hardware and software.
• Backup and security group—responsible for prevention and monitoring of

security for the laboratory.
• Documentation group—responsible for dealing with the maintenance of

appropriate documentation of a system. The person choosing the
documentation group slot for a team was also given the leadership roll for
their team.

The above-mentioned Pentium processor systems and two older SPARC
processors were the hardware platforms offered to the student teams.
Additionally, each team was allowed to choose an operating system to manage
on their machine subject to license availability. For the Pentium processors the
students were offered Solaris for the 386 or Linux. Solaris or SPARC-Linux was
available for the Sun systems. One team expressed considerable interest in
integration of Windows NT into the laboratory, and since there was one license
available for NT, it was agreed that this team could support NT, so long as class
assignments could be performed on their system.

Figure 5

Class assignments were of three forms: user assignments, team assignments
and interest group assignments. Because each team was to provide accounts
on another team's platform, each team became a user base for another team.
Thus, individual user assignments became team assignments. For example, a
user assignment to enter an HTML page containing a Java applet became a
team assignment to install a web server and a Java compiler on their system.

https://secure2.linuxjournal.com/ljarchive/LJ/041/2361f4.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/041/2361f5.jpg

Interest group assignments were those that altered or reconfigured the basic
capabilities of the laboratory. For example, creating two subnets in the
laboratory, creating a backup system for the laboratory machines, monitoring
and securing the laboratory were duties in which the interest groups joined
together to accomplish the assigned task.

Finally, to address distributed system management issues, all teams were
assigned the responsibility of installing, providing and managing file and print
services for the laboratory. An Iomega Jaz drive was configured as the boot disk
for the machine in the laboratory that was to be the NFS and print server. This
machine was also configured with an additional two SCSI hard disks, a tape
drive and a printer. Each team checked out a Jaz disk and built an operating
system on its disk. The only team that had a problem using the removable disks
was the Windows NT team, which discovered that (by design) a Microsoft
Windows application cannot have page files that reside on a removable drive.

Initially a working system was provided for the file server, but occasionally a
team's Jaz disk would become the working system for the laboratory. If
problems were discovered, the initial system could easily restore needed
services, and the team could be given the responsibility of repairing the
problem without disrupting services. Maximum chaos could easily be achieved
by assigning problems such as the rebuilding of the kernel on the Java disk
system.

Security Concerns

Due to concerns by Auburn's Engineering Network Services group regarding
students having root access to machines connected to the campus network, the
Linux machines were isolated on a subnet, connected to the main college of
engineering network through a secure router which knows the address of the
machine connected to each port, and routes packets only to the machine
designated to receive them. We physically secured the machines by locking the
room in which they were kept whenever no paid employee was in the
department (not necessarily in the same room), and we routed a fiber optic
cable connected to an alarm box through all the machine cases. We soon found
this cable frustrating, because it required the assistance of the department's
single systems administrator any time a hardware change was necessary (this
occurred several times a day during the first months). In spite of these
precautions, we lost the motherboards and disk drives of two machines to theft
during that quarter. We had failed to realize that the sort of commodity
hardware used in this lab is a much more attractive target for theft than the
engineering workstations, minicomputers and parallel machines we have
traditionally used for academic research and instruction. Further, the constant
need to access the hardware inside the PC cases meant that more
opportunities existed for the alarms to be disconnected. There seems to be a

fundamental tension in a systems lab between making the lab a good
development environment and making it secure against a dishonest student—
one simply cannot lock down every cable, nut and bolt if any work is to get
done. On the other hand, insurance policies are difficult to obtain without
evidence of adequate security.

Our current security approach is multifold:

• Fiber optic cables run through the machine cases
• A lock on each computer's case—keys are available any time during

business hours
• A digital camera, connected to a 486 machine, used to snap pictures, send

them to a file server in a very secure room and serve the latest one to the
lab's web page at http://dn102af.cse.eng.auburn.edu/~root/labimage.html

• Locking the lab when none of the departmental staff is around

Any individual measure can certainly be circumvented, and of course, a
dedicated effort can defeat any security system. So far this system seems to
provide a credible theft deterrent without interfering too heavily with
productivity.

Lessons Learned

For many of our students, their experience with our lab turns out to be the first
time they have academically dealt with the inside of a computer. Thus, we find
ourselves teaching a way of thinking as much as the particular techniques
related to the subject matter. The commonplace tasks of debugging a system,
such as isolating a problem to hardware configuration, BIOS settings, OS kernel
or application, are new territory for beginning students. This lab gives them the
chance to gain confidence in a realistic setting.

One criticism that students have made of our approach is, “The real world
mainly runs Microsoft Windows—why aren't you teaching us about that?” While
their claim is indeed valid when one looks at market share and while any
computer scientist who claims to be well-rounded must accommodate the
demands of the market, there are significant obstacles to providing the kind of
experience we provide using commercial software. The two largest obstacles
with commercial operating systems are the lack of source code and the lack of
easily available technical support from the software developers. A student who
wants to explore the performance differences between several different page-
replacement strategies in the file system can do so more easily with Linux and a
PC than with any other OS and computer of which we are aware.

Another lesson we learned is that with today's large disk drives and with the
use of removable cartridge hard drives, it is possible for a number of operating
systems to (more or less) coexist on the same machine and for a wide variety of
platforms to communicate over a local network. We think this has provided our
students with a taste of the complexity of real-world systems administration
(though they will not truly know what that is like unless we make them wear
beepers and page them at all hours).

References

On balance, we find this Linux-based approach an improvement over our
previous methods and plan to continue it. We've had very positive preliminary
feedback from the students who have used the lab and are looking forward to
hearing whether it helps our graduates in the “real world”.

Richard Chapman is a faculty member in the Department of Computer Science
and Engineering at Auburn University. His other interests include hardware/
software co-design, formal methods and the history of computing. He has been
involved with Linux since the release of Red Hat v1.0. He used to restore early
1970's minicomputers in his spare time—now he wishes he had spare time. He
receives e-mail at chapman@eng.auburn.edu.

W.H. Carlisle is an associate professor of computer science and engineering at
Auburn University. He received his BS, MA and PhD degrees from Emory
University. His research interests are in languages and environments for
system software design and testing. He is a member of the ACM and the IEEE
Computer Society.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/041/2361s1.html
mailto:chapman@eng.auburn.edu
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/041/toc041.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Using Linux in a Training Environment

B. Scott Burkett

Issue #41, September 1997

One company's experience using Linux as the operating system of choice for
their training classes.

The proliferation of the Linux operating system has done much to stimulate the
interests and activities of hobbyists around the globe. Many developers and
users are taking advantage of this freely available, 32-bit wonder, as a viable
home alternative to a commercial Unix platform. With a multitude of Linux
enthusiasts active in key positions the industry, it was only a matter of time
before Linux also became a presented solution in the workplace. Even though
Linux sports some of the more advanced and innovative mechanisms available,
only recently have many organizations begun to accept Linux as a solution for
production projects.

My employer, Decision Consultants, Incorporated (DCI), is one of the nation's
largest software services consulting firms. I am a technical instructor in our
Training Division, which is responsible for creating, packaging and
implementing technical training solutions to both our consultant base and
external clients. A large portion of this training revolves around Unix-based
client/server development. We needed a versatile, flexible training room,
capable of facilitating our entire repertoire of Unix-based courses, from Unix
Essentials to X/Motif Development. This formula, once successfully
implemented, would need to be “cloned” for our other branch offices around
the country. In this article, we will examine certain portions of that solution, as
well as present an action plan for implementing your own Linux solutions.

Overview of Requirements

The first step in any major endeavor is to formulate a plan of action which will
ultimately lead you to your goal. Our plan of action first involved the creation of

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

a list of all the major lab-based, Unix-related courses which would need to be
delivered in the training facility. They included:

• Unix Essentials
• Advanced Unix/Shell Programming
• C Programming
• X Windows and Motif Development
• Unix Internals/Systems Programming
• Networking with TCP/IP

After the list was created, it was analyzed further to create a list of the tools and
host-level resources which would be needed. Of course, all of the classes would
require an operating system, a properly configured TCP/IP setup to provide
student connectivity and a working Unix shell. A stable C compiler would fit in
nicely with the C Programming course, and a feature-packed X server would be
needed for the X Windows development course. Another concern was Motif
which is available in many forms these days.

Once this list was created, a platform had to be chosen. Given pricing
structures of major vendors, such as Sun, HP, DEC, etc., Linux was the clear
winner. We could spend several thousand dollars for the latest and greatest
version of one of the popular vendor offerings or a mere twenty bucks for a
recent Linux distribution on CD-ROM. The choice was not a difficult one to
make.

However, the choice of Linux was not based on price alone. As you are
probably aware, all of our requirements (with the exception of Motif) have been
readily available on most Linux distribution CD-ROMs for quite some time. A
number of other nice tools, such as TCP/IP, NFS and a full suite of developer
tools, would have cost extra with most commercial vendors. Several
inexpensive, Linux-specific versions of Motif are available, such as SWiM, Metro
Motif, Mootif and Moteeth.

The total cost for the host-side software load totaled somewhere in the
neighborhood of 120 dollars (20 for the Linux CD and around 100 dollars for
the X11R6 version of SWiM for Linux). That cost is roughly equivalent to the
sales tax you would incur when purchasing a major vendor's bundle.

Implementation

A typical DCI training room consists of eight student workstations connected to
a single host machine on an isolated Ethernet bus. The host machine should
have the capability to handle at least eight TELNET sessions or, in the case of

our more advanced courses, up to eight X Window sessions. The following is a
breakdown of a typical DCI training host:

• 90MHz or better Pentium processor
• 16 to 32MB of RAM
• Adaptec 1542CF SCSI controller (ISA-based card)
• 1GB (or better) SCSI drive
• Standard issue SCSI CD-ROM unit
• Streaming SCSI DAT drive
• Generic NE-2000 compatible network interface card (NIC)
• Number 9 Trio64 (S3 chip set) video card (2MB RAM on board)
• Low-end, LaserJet-compatible printer

The Processor

Our original prototype training room uses a stock 60MHz Pentium processor in
its host machine, although newer training rooms are coming on-line with
Pentium 90MHz processors or better. There is a huge difference in processing
speed between the older Pentium 60 models and the newer Pentium 90 units,
although I have had great success with both systems. If you are still hesitant
about obtaining a Pentium machine, a 486DX/100 unit will provide comparable
performance.

Memory

For most training classes including X Windows and Motif, 16MB is adequate. Of
course, greater performance can be obtained by simply upgrading to 32MB of
RAM on the host. I recommend getting the full 32MB of RAM initially, rather
than purchasing it later. While our MIS department has been quite
accommodating to our hardware requests, your organization may not be as
generous. If you have corporate red tape to cut through, request the 32MB up
front.

The SCSI Controller

We currently use the Adaptec 1542CF SCSI controllers. These are ISA-based
cards which have been stable under Linux for quite some time. I have
experimented with the Adaptec 2940 PCI-based controller, but it was a bit too
squirrelly for my tastes. Even though the 1542 units are 16-bit ISA cards, my
aim was stability first and foremost. A few other cards which I can personally
attest to are the Future Domain 1680 series and the older Always IN-2000
cards.

The Hard Disk

Our first training room used an older 500MB IDE drive. While it served
admirably and reliably, it also reached maximum capacity in a hurry. For a full
install of Linux, complete with XFree86, I allow a liberal 200MB or so. However,
some other storage requirements must be taken into consideration during the
planning phase. For instance:

• Motif—With the newer X11R6 distributions of SWiM, roughly 30MB of
storage is needed for a full install from CD.

• Student lab work—Plenty of storage must be set aside for student lab
work. Some courses, such as the Shell Programming course, don't require
much storage for student lab work. Other courses, like our X/Motif
Development course, require quite a bit. For 8 students, I recommend
having around 20MB or so available per student for their course work.

• Linux kernels—If you plan on experimenting with newer revisions of the
Linux kernel, plan on having a lot of extra room. I recommend having
20MB or so per revision.

• Temporary storage—Plan on setting aside a liberal amount of storage for
temporary files (i.e., the /tmp directory). In fact, I recommend that you
make this directory a separate file system altogether. I like to have
100-200MB available for a typical temporary storage area.

• WWW storage—We run an internal training Web, complete with on-line
prep tests for our students. I must point out that even the smallest
working Web requires a good bit of storage. We currently have around
20MB or so of web information on-line (including the web server software
and our image library).

• Working storage—Of course, we need plenty of room to sock away on-line
course materials (completed solutions to lab work, shell scripts, etc). In
addition, our instructors do quite a bit of development and
experimentation as well, so that must be taken into account as well. A few
hundred megabytes will work nicely.

The CD-ROM Unit

Of course, any good Linux system needs a CD-ROM unit attached. With most
software packages shipping on CD-ROM these days (including Linux), it pays to
have one of these drives in place. Should disaster strike, it's much easier to
reload the base operating system from CD-ROM, rather than a tape backup
unit. I have had great success with several models from NEC, Sony and Sanyo.
Try to stay away from proprietary SCSI interfaces, such as come with some
Compaq CD-ROM drives. That old single-spin, wonder unit in the attic may
make a perfect candidate for this job, since it won't be used all the time.

Streaming SCSI DAT Drive

These wonderful devices make perfect solutions for backups. These drives are
so fast and quiet that I have actually performed system backups while a class
was in session. Any major brand should work nicely, although I can personally
attest to the 2GB and 4GB models from Colorado. Even if you have to perform
backups on an older 120/250MB Colorado Jumbo, the issue of system and
working backups should be addressed swiftly and immediately.

The Network Interface Card

For connectivity, a generic NE-2000 compatible card works rather nicely. I have
had good experiences with 3COM 3C509 cards, as well as the Intel Etherexpress
cards. If you are setting up a full network, be sure to purchase network cards
which match any existing or planned wall connections. Don't run out and save a
bundle on a rack of AUI-based cards, if you have twisted pair connections in the
wall already.

The Video Card

We use and recommend the Trio64, S3-based cards from Number 9. These
cards have proven to be quite reliable and versatile under X Windows. This is a
tricky area, due to the fact that XFree86 only supports cards with certain chip
sets. Other good choices include cards sporting a Tseng-4000-based chip set.

The Printer

Our students are not in the graphic design business, nor are we. A low-end,
LaserJet-compatible unit works nicely for source code printing and other small
jobs. In fact, even a low-end printer can generally support postscript or PCL raw
formats, so working with programs like ghostscript and TeX can be facilitated
easily. I think our printers are coming on-line at around $400 per unit—not bad.

Back to Business

While installing, configuring and maintaining our Linux host machines can be
somewhat time consuming, the same procedures, when performed on our
student workstations, take considerably less time. Depending on which training
branch you visit, our student workstations range from older 486/33 machines
to newer Pentium 90 desktop models. For a simple TELNET connection, even
older XT/AT or 286 machine is capable of running NCSA's freely available
implementation of TELNET.

For X Windows and Motif development, a more robust platform is required.
Most of our workstations have around 500MB of storage and 8 to 16MB of
RAM. DCI is an Authorized Microsoft Technical Education Center (ATEC). As

such, we also instruct a number of non-Unix related courses, such as Windows
NT development. These courses require considerably more resources on the
workstation side. The only common denominator is really the network cards
used in the workstations, which are also of the NE-2000 variety.

As far as workstation tools go, we use the following software packages on each
of our workstations:

• NCSA's TELNET Package has truly been a gift from the heavens. It has
performed reliably over a sustained time period and is quite configurable
on the workstation side. With it, our students are able to maintain
multiple TELNET sessions, as well as the occasional FTP to the host to
upload their lab work.

• X/Appeal from Xtreme S.A.S. (Italy) is a remarkable, surprisingly
inexpensive X Server for DOS. It supports a number of different video chip
sets, as well network configurations. A 30 day trial version of X/Appeal can
be obtained at ftp://oak.oakland.edu/.

• Microsoft Windows for Workgroups v3.11? In a Unix-based training room?
Surprised? Not at all. One of the nice things about our setup, is that we
use the freely available Samba package to allow Linux to provide shared
directory and printer services to our DOS/Windows based workstations.
The bulky Windows products used in some of our other courses
(PowerBuilder, Visual Basic, Visual C++, etc.) can be installed directly onto
the Linux host, freeing up valuable disk storage on the workstations. In
fact, we even share the CD-ROM which is installed on the host machine.
The student workstations can then access the CD-ROM at any time.

Benefits/Drawbacks

While there are a number of advantages to using Linux as a training solution, a
number of drawbacks also manifest themselves over time. Do the benefits
outweigh the drawbacks? I'll let you be the judge.

The Price of the Operating System

Free. End of story. As mentioned earlier, the price of a stable Linux distribution
on CD-ROM is exponentially cheaper than obtaining a commercial solution,
such as SCO or Unixware. In fact, with the extra cash you have left over, you can
afford to subscribe to Infomagic's quarterly Developer's Resource 4 CD set for
the rest of your life.

The Price of the Hardware

With PC-based hardware prices falling, you can pick up an adequate host
machine for under $4,000. Compare that to the 5-digit price of a proprietary
architecture, such as an IBM RISC machine or a Sun SPARC.

The Price of Tools and Add on Packages

As mentioned earlier, most, if not all, Linux distributions ship with a multitude
of packages which would cost you extra from some commercial vendors. A
third party Motif derivative for Linux runs far less than the asking price from
OSF. In fact, one of the reasons that I became involved with Linux was the
steep-pricing structure issued by SCO. I am a former employee of a SCO VAR,
reseller and software development house. I decided that I would purchase SCO
for myself and run it at home on one of my spare machines. I laid out $1,500
just for the base operating system, only to discover that to add TCP/IP and the
Developer Kit another $1,500 would be in order—not for me.

Lack of Technical Support

This is truly the most pressing battle you may need to fight. Since there is no
central technical support group for Linux, internal staff are responsible for all
maintenance and support of the system. If you don't have a true Linux fanatic
around or someone, who plans on becoming one in a hurry, you might be
better off with a commercial solution. We have two Linux mongers on our
instructor staff, with another dozen or so in our local consultant base—works
out rather nicely for us.

Lack of Commercial Solutions

Up until now, most commercial software developers and vendors shied away
from marketing Linux native tools. However, a new trend is coming into play.
Thanks to some key players in the industry (Caldera, WordPerfect, etc.), more
and more tools are becoming available for Linux proper. I expect this trend to
continue, as more and more Linux machines appear in the workplace. In
addition to the Linux native packages which are becoming available, another
option exists. Under the freely available iBCS2 emulator, binaries for other
iBCS-supported platforms can be utilized under Linux. In fact, we have had
great success running the SCO versions of many packages under Linux,
including WordPerfect/X and Oracle 7. While a further discussion of iBCS2 is an
entire series of articles in itself, it is something you may wish to explore further
at least as an interim solution.

Implementing a Linux Solution

In order to assist others in putting together a Linux solution, I have put together
a list of tips and pointers to give you a good starting point. Some of these areas
are discussed further in the wonderful white paper by Caldera, Inc., “Using
Linux in a Commercial Setting.” The primary focus of your effort is probably to
convince management that a freely available OS is a viable solution. This is
rarely an easy task by any stretch of the imagination. If you have strings in the
company, plan on pulling them.

Getting a Game Plan Together

Before presenting your case to management, be sure to have a game plan in
order. Don't jump up and shout “Let's run Linux.” at the first project meeting.
Corporate ties with commercial solution providers often run deep, so be
careful. Put together a detailed implementation plan, complete with a cost
savings analysis and time schedule. There are a number of things you can do to
help yourself in this regard.

Actively research the necessary areas. Provide solid numbers for commercial
solutions. Be sure that you have accommodated all aspects of the project
within your proposal. Make sure that all issues of connectivity and software
facilitation have been addressed. Think of it as a legal battle—leave no
loopholes in your argument.

Obtain and maintain high-level contacts in the industry. Meet with other folks
who have successfully implemented a Linux solution. They may be able to
provide additional insight into your argument. Planning on running the latest
and greatest version of “product X” under Linux? Chances are, someone else
has already driven the Linux wagon down that road—investigate.

Establish a good flow of incoming information. Actively participate in the
various Linux newsgroups. They are a wonderful resource for obtaining
contacts and production information. Subscribe to Linux Journal. Helpful
articles and vendor information are in abundance with each issue.

Hardware integration—make sure that your proposed hardware will function
once its all together on-line. If you can't do it yourself beforehand, try to find
someone who has. The worst thing in the world is to win the battle with
management and run into hardware issues which require additional purchases
to patch a problem that you didn't foresee.

Presenting your Solution

Once a solid proposal has been constructed, present your case. Try to leave a
solid impression of Linux with your attendees. Some key Linux points to hit on
include:

• POSIX compliance
• 32-bit architecture
• Cost savings
• Availability of tools and software solutions
• Network capabilities (TCP/IP, IPX, AX.25, etc.)

Unfortunately, most folks still perceive Linux as a toy. In your presentation, be
sure to point out the efforts of major industry players, such as Caldera and
WordPerfect. Let them know that Linux is quite capable of providing a solid
solution for your organization.

Conclusion

Linux is a viable solution platform. Our nationwide network of training centers
is a living testament to that statement. With the proper direction, its
proliferation in the workplace can continue on an upward trend. The Linux
operating system reminds me of an expansion baseball team. It has a lot of
fans, but nowhere near the fan base of an established and proven team. It is
young and full of promise, and one day, just maybe, it will win the pennant.

Scott Burkett is a full time C/Unix technical instructor for Decision Consultants,
Inc. (DCI) (http://www.dcicorp.com/), one of the country's largest software
services consulting firms. He has worked with a variety of languages on
multiple platforms. Scott is one of the co-authors of the of The Linux
Programmer's Guide , part of the Linux Documentation Project and the author
of The Linux Bootkit. An accomplished webmaster, he has set up web sites for
the Southeast Region of DCI (http://www.computerppl.com/) and The Tampa
Bay Linux GNU Technical Society (http://www.intnet.net/). Scott can be reached
through the Internet as burkebs@intnet.net.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/041/toc041.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Programming with the XForms Library

Thor Sigvaldason

Issue #41, September 1997

Part 3 shows us the means to give our game simulator a more professional
appearance and to add a few goodies.

In the first two articles of this series, we learned how to install XForms and
began building an application (a game theory simulator). In this final article, we
spruce up our program and look at a few XForms features that we skipped last
month. As always, source code and further information can be found on the
home page for this series at http://a42.com/~thor/xforms.

Review of Our Progress So Far

If you've been following things reasonably closely, you probably remember the
general outline for constructing an XForms-based application:

1. Include forms.h to access the XForms routines
2. Call fl_initialize() as soon as possible
3. Set up your graphical interface by creating forms
4. Assign actions to relevant objects by setting callbacks
5. Show one or more forms
6. Turn control over to fl_do_forms()

Last month, we followed this procedure to get our basic game theory simulator
up and running. While that gave us the basic windows we needed to be able to
control and observe the underlying simulation, there were a number of
shortcomings. We had no way to save the settings of any particular run of a
game, no pull-down menus and no pixmaps to make our program look
somewhat professional. The new version of the simulator (called xgtsim2) adds
all of these elements and includes a few other bells and whistles that we
discuss throughout this article.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

The basic approach, however, has not changed. If you could follow last month's
source code, you should have no difficulty understanding xgtsim2, even though
it is a larger piece of software. The core of the program is the same, since all we
have done is add a few more features. Extra features make a program useful,
and one of XForms's great strengths is in providing straightforward methods
for enhancing a program's usability.

A Look at xgtsim2

You can find the source code for xgtsim2 in Listing 1 on the home page, but it
will save you a lot of time if you download it from the web site. Saved as an
ASCII file with the name xgtsim.c, it compiles with the command:

gcc -lX11 -lforms -lm xgtsim.c -o xgtsim

From within the X Window System, you should be able to run the program by
entering ./xgtsim2 in whichever directory you compiled it in. The running
program should look something like Figure 1.

Figure 1. Screen Shot of xgtsim2

As noted near the top of the source code, everything that has been added to
xgtsim2 since last month's program (i.e., the original xgtsim) is marked by the
string *NEW*. This should make it a little easier to find the segments of code
we discuss below.

New Items

The first thing to notice when xgtsim2 runs is that the starting window
(main_window) is a little larger than it was last month, and it now includes three
pull-down menus (File, Settings and Help). Adding these menus with XForms is
quite straightforward. If you look at the code for the create_forms() function,
you'll see we have added an FL_UP_BOX to hold the menu items, then call
fl_add_menu() three times. The inclusion of the FL_UP_BOX isn't strictly
required, but it does make our menu area stand out from the rest of the main
window.

In the first of the fl_add_menu() calls, we create the file menu. Note that this
involves only a single FL_OBJECT, with the menu entries (e.g., About, Load, etc.)
being assigned to this object with the use of the fl_addto_menu() function. That
is, we need to assign only a single callback for the entire menu, which we do by
telling XForms we want the function file_menu_routines() to be called whenever
any entry in our File menu is selected by the user.

https://secure2.linuxjournal.com/ljarchive/LJ/listings/041/2010.tgz
https://secure2.linuxjournal.com/ljarchive/LJ/041/2010f1.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/041/2010f1.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/041/2010f1.jpg

A little earlier in the source code, we can see that file_menu_routines() uses a
call to fl_get_menu() to figure out which of the four possible entries was actually
selected. It then calls the appropriate function. If, for example, the user selects
About from the File menu, XForms knows it must execute the code included in
file_menu_routines, because that's the function we have assigned with the
callback. In calling this function, it passes the file menu object to the routine, so
the call to fl_get_menu() returns a 1 (since About is menu item 1).

We use a very similar structure for the Settings and Help menus, creating a
function to handle the callback for each (settings_menu_routines() and
help_menu_routines()). With just a few lines of code, we have added a fairly
complete menu system to the program. XForms does most of the hard work
here, such as actually drawing the menus when the user clicks on them,
highlighting the entries and so on. This leaves us free to focus on the
underlying flow of the program.

One common element of menu design we have not implemented is the use of
keyboard shortcuts. XForms allows for these accelerators via the
fl_set_object_shortcut() function, as well as offering mechanisms to grey out
menu entries under certain conditions, change the visual look of the menus
and so on. More information about these routines can be found in the XForms
documentation (see Resources).

Other additions to create_forms() are calls to fl_set_object_resize() and
fl_set_object_gravity(). The easiest way to see what these do is to run the
original xgtsim and resize the main window with the mouse pointer. If you do
this, you'll notice that the buttons always grow at the same rate as the overall
window; make the window really big, and the buttons become enormous. It is
not very attractive, so we want to use the gravity and resize parameters to
improve this behavior.

Almost all graphical elements in XForms have a default resize setting that
causes them to grow in direct proportion to the window in which they were
created. We change this behaviour in create_forms() by calling
fl_set_object_resize(). This function takes two parameters: the object to which it
applies and a setting value, which can be FL_RESIZE_NONE, FL_RESIZE_X,
FL_RESIZE_Y or FL_RESIZE_BOTH. For the FL_UP_BOX that holds the pull-down
menus, we use the FL_RESIZE_X option, since we want the menu bar to always
be the width of the screen but maintain a constant height. Similarly, we use
FL_RESIZE_NONE for the buttons so that they remain the same size no matter
how the window is changed.

Object gravity is a related concept and determines how objects should be
oriented to the window in which they are drawn. Using the example of the

menu bar again, we don't want the menu to drift down at all, even if the user
resizes the window to be very large. The function fl_set_object_gravity() requires
a parameter for the relevant object and two subsequent values, which dictate
orientation behaviour. The first of these determines which direction the upper-
left-hand corner of the object should move as the underlying window is altered.
The second sets the behaviour of the lower-right corner. Since we always want
the Help menu to appear on the right edge of the menu bar (and stay at the top
of the window), we use the following form of the function:

fl_set_object_gravity(obj, FL_NorthEast, FL_NorthEast)

Conversely, we want the File menu to stay to the left, so we replace both
occurrences of FL_NorthEast with FL_NorthWest in that call. With a little
thought on the programmer's part, XForms makes it quite easy to have
windows that resize in attractive ways. This can add a significant amount of
polish to any graphical application and make it usable in a wide variety of
circumstances.

To dress up our program a little, we have inserted a pixmap in the About

window. The actual pixmap data is stored in a variable called xgtsim_logo which
is included at the end of the source code. We then need two calls to create the
object that holds the pixmap and assign our data to it:

obj = fl_add_pixmap(FL_NORMAL_PIXMAP, 13, 13,
 70, 55,"")
fl_set_pixmap_data(obj, xgtsim_logo)

We declare how much space we need for the pixmap image in the
fl_add_pixmap() call, but it is the second function which actually assigns the
data. Since this pixmap is just for decoration, we don't need to declare any
callbacks. To use pixmaps as buttons (in the same way that programs like
Netscape do), you'll want to have a look at the fl_add_pixmapbutton() function
in the XForms documentation.

The fact that the logo is not particularly artistic should not be taken as a
shortcoming of XForms. I am reasonably competent at hacking out C code but,
even when equipped with The GIMP, I'm no Picasso.

Using Goodies

With the inclusion of a menu system, resizing parameters and some decorative
pixmaps, XForms-based applications like xgtsim2 can be easily polished into
user-friendly, attractive software. XForms also provides a slew of easy-to-add
program elements called “goodies”.

An example of a goodie occurs in the code for help_menu_routines(). If the user
selects Use from the help menu, he gets a window that displays information
about how to use xgtsim2. Since the program is just an example, we haven't
actually written any help files for it—we just want to display a window
explaining that help is not (yet) implemented. We could create this window
manually, adding some text objects, an “OK” button and so on; however, this is
a lot of work just to say there is no help available. Instead, we use a goodie
called fl_show_alert(). This function accepts three lines of text as parameters, as
well as an integer value to determine the placement of the ensuing
announcement (the value 1 just tells XForms to place the window in the center
of the display). With one line of code, we have an easy way to display text
messages to the user without having to design a new window ourselves.

An even more powerful example of a goodie is the XForms-supplied file
requester. Writing one of these from scratch can take a good deal of time, since
we would need to create a window with some kind of browser, open and close
buttons, implement a filtering mechanism, etc. The fl_show_fselector does all of
this for us and allows the load_config() and save_config functions in xgtsim2 to
be very compact. The full form of the function is as follows:

fl_show_fselector(const char *message,
 const char *directory,
 const char *pattern,
 const char *default)

The four string parameters allow us to set the selector's message, a specific
directory to start from, a filtering pattern, and even a default file name. All of
this occurs with a single function call. A somewhat subtle feature of the file
selector is the existence of six such selectors, each of which remembers the last
directory if the *directory string is passed as length 0. In xgtsim2, we use two of
them, one for loading and one for saving. In each case, we declare which
selector appears by making a call to fl_use_selector() before calling
fl_show_selector(). That way, if users are loading data from one directory and
saving it in another, they will not need to keep clicking back and forth between
directories each time they want to access files.

There are also mechanisms for adding configurable buttons to the selector,
setting the window title, and so on. Anyone who has designed a method for
letting users load and save files will appreciate the amount of thought and
planning that has gone into this widget.

There are many other goodies provided by XForms, including routines to get
input from the user (fl_show_input), other message display routines
(fl_show_question) and even a quick and easy method for getting color
selections (fl_show_colormap()).

On Your Own

There is still much about XForms that we haven't touched on in this series, but
the documentation included with XForms is excellent at explaining all of the
resources available. With a little effort on the programmer's part, the library
provides for fast program development and a professional look. There's even a
form designer included in the XForms package which enables you to design an
interface using a mouse. This makes creating complex windows a breeze, and
the software produces output which can easily be incorporated into your
source code.

Even if you never create a “killer app” with XForms, the basic lessons of placing
GUI elements, assigning callbacks and showing windows are reasonably
transportable to other programming environments and libraries. These articles
should give you the basic knowledge required to create X programs. To
paraphrase Donald Knuth, go forth and create great software.

Resources

Thor Sigvaldason is the author of the statistics program xldlas which uses the
XForms library (see Linux Journal, February 1997). He is trying to finish a PhD in
economics and can be reached at thor@netcom.ca.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/041/2010s1.html
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/041/toc041.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Packet Radio Under Linux

Jeff Tranter

Issue #41, September 1997

Linux and ham radio share a common spirit of cooperation, experimentation
and do-it-yourself attitude. These two interests come together in packet radio.

In my teens I spent many enjoyable hours tinkering with radio equipment and
communicating with other “hams” around the world through the medium of
amateur radio. Moving away to attend a university and start a career and family
meant that my hobby had to go on temporary hiatus for a number of years.
Recently, I came back to the hobby and decided to explore an area of amateur
radio that didn't exist in my teen years—digital packet radio. As an avid Linuxer,
I was intrigued to see how I could use my Linux system for packet radio. I was
on a limited budget, and wanted to get started without investing in a lot of
hardware and software.

What Is Ham Radio?

Amateur radio is a pursuit enjoyed by millions of “hams” around the world. By
international agreement, most countries have allocated a portion of the radio
spectrum for amateurs to experiment with radio technology. The hobby goes
back to the early days of radio and is popular with people of all ages. Operating
an amateur radio station requires an operator's license, which can be obtained
by passing an examination that covers radio theory, regulations, operating
practices and basic electronics. Full privileges also require a knowledge of the
International Morse Code (yes, it is still used) although some countries now
offer no-code licenses that typically include restrictions in operating modes and
frequencies.

Hams are known for building their own equipment and accessories,
experimenting with new technologies and helping each other and the public.
This is close to the spirit of Linux, so it is not surprising that many hams are also
Linux users.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

What is Packet Radio?

As personal computers became increasingly powerful and affordable, amateurs
looked at using radio for digital communications. Packet radio is one such
method in which text is encoded as binary data and transmitted via radio in
groups of data, called packets. One popular protocol developed for this
purpose is AX.25. Based on the X.25 protocol but adapted for the special needs
of amateur radio, it offers error-free, packet-based communication between
stations. Other protocols, such as TCP/IP, can run on top of AX.25. A few of the
applications of packet radio include chatting by keyboard with other hams in
real-time, using packet bulletin board systems, sending electronic mail, and
connecting (via gateways or worm holes) to other packet networks or to the
Internet. Data rates range from 300 bits per second on HF (High Frequency)
bands to 1200 bps on VHF (Very High Frequency) and 9600 to 56Kbps and
beyond on UHF (Ultra High) frequencies.

What Kind of Packet Radio Hardware Do You Need?

A typical packet radio station consists of a computer or terminal connected to a
Terminal Node controller (TNC), and radio transceiver (transmitter/receiver). A
TNC is a device containing a small microprocessor, dedicated firmware in ROM,
and a modem to convert signals back and forth between audio and serial bit
formats, and also encodes and decodes data with the AX.25 protocol. A typical
TNC connects the radio to the computer via its serial port.

Another popular option is the “poor man's modem-only” Terminal Unit (TU). It
essentially has a modem chip sandwiched between its audio and serial port
connectors. Software drivers on the computer must therefore handle all of the
AX.25 protocol. It's popular because of the price—typically one third the cost of
a TNC.

The typical DOS-based packet setup has a number of limitations. Since the
system is single user, the computer must be dedicated to packet and cannot
easily be used for other purposes. Generally, the computer is used as a dumb
terminal or dedicated software is used that takes over the whole computer.
Although some software packages such as JNOS run on XT or AT class
machines, Linux typically runs better on a 386 machine having limited memory
than a commercial operating system alternative such as Windows 95.

Packet software is either free or distributed as shareware in binary form. Some
packages, notably JNOS, are also available as source code.

What Does Linux Offer?

As of release 2.0, Linux has native support for the AX.25 protocol built into the
kernel (a unique feature among operating systems). For earlier releases, Alan
Cox's AX25 package is easily patched in. Furthermore, AX25 is integrated with
the rest of the Linux networking code and utilities. To Linux, a packet radio
interface appears as just another network interface, much like an Ethernet card
or serial PPP link.

The kernel contains device drivers for serial port TNCs as well as several
popular packet modem cards. It even offers a driver that uses a sound card as a
packet modem (more on that later).

Once up and running, you can let users telnet into your Linux system via packet
radio, offer them a Unix shell or one of several BBS programs, or even let them
surf your system with a web browser. Thanks to Linux's multiuser and
multitasking capability, this occurs without affecting the normal use of the
system.

A Linux machine can act as a router to connect packet network traffic to a LAN
or Internet connection and can route e-mail via packet. You can have multiple
packet interfaces with many simultaneous connections over each interface.

Back to My Story

My first introduction to packet was using the sound card modem driver with a
hand-held 2-meter band transceiver for 1200bps packet. The audio connects
from the PC sound card to the radio's microphone and speaker jacks. A signal
from a serial or parallel port in conjunction with a simple (one transistor) circuit
is used to control the radio's PTT (Press To Talk) circuit. This approach requires
no TNC and no packet modem—if you already have a computer and sound
card this costs almost nothing. Figure 1 shows a block diagram of my setup.

https://secure2.linuxjournal.com/ljarchive/LJ/041/2218f1.large.jpg

Configuring the system was straightforward—I just followed the detailed
instructions in the AX25 HOWTO. Utility programs included with the AX25
package allow me to monitor the packets being broadcast and received, and to
call and answer other packet stations.

I obtained an IP address from the local IP coordinator (the 44.x.x.x ampr.org
Internet domain is assigned for packet radio) and configured my system for
TCP/IP over packet. All the standard network tools then operated over packet.
Assuming they are configured for TCP/IP, I can ping or finger other stations and
connect to them using telnet. Similarly, I can log on to my home Linux machine
over the Internet.

Next I plan to set up a simple BBS system users can log on to via packet radio.
I'd also like to look at more sophisticated packet networking tools supported
under Linux, such as NetRom, NOS and Rose. In the future I may even explore
options for higher-speed packet such as the 56 Kbps Ottawa PI2 card.

Conclusions

As well as being fun, packet radio under Linux taught me a lot about
networking, much of which is also applicable to Ethernet, X.25 and other
network protocols.

Linux is a great platform for packet, particularly since it is fully integrated with
the rest of the networking subsystem. Its reliability lets you leave a Linux
system up for long periods of time without crashing (ideal for a BBS
environment). As an example, one local Linux system has been on the air

https://secure2.linuxjournal.com/ljarchive/LJ/041/2218f1.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/041/2218f1.large.jpg

continuously for over 310 days without interruption. Some of the software I
used was still in alpha release yet was stable enough to use. Finally, packet
radio has opened up a whole new area of Linux for me to explore, ensuring
that I won't run out of things to do in the foreseeable future.

Acknowledgments

Thanks go to Gord Dey, VE3PPE, for reviewing this article and adding many
valuable suggestions. I also wish to thank Terry Dawson for writing the AX25
HOWTO and utilities, Alan Cox, Jonathan Naylor and others for writing the Linux
packet code and Thomas Sailer for writing the sound card packet modem
driver.

Resources

Jeff Tranter is the author of the Linux Sound and CD-ROM HOWTOs and the
book Linux Multimedia Guide, published by O'Reilly and Associates. His hobbies
beyond Linux and ham radio include playing guitar, cross-country skiing and
lava lamps. His ham radio call sign is VE3ICH and you can reach him via e-mail
at jeff-tranter@pobox.com.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/041/2218s1.html
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/041/toc041.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Product Reviews: Empress RDBMS and Just Logic/SQL

RDBMS

Rob Wehrli

Issue #41, September 1997

The bottom line in choosing between these two Linux database packages is one
of cost versus time and user programming capability.

• Manufacturer: Empress Software Inc.
• Phone: 301-220-1919
• E-mail: sales@empress.com
• URL: http://www.empress.com/

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

• Price: $1500.00US

• Manufacturer: Just Logic Technologies Inc.
• Phone/Fax: 800-267-6887; 514-642-6480
• E-mail: info@justlogic.com
• URL: http://www.justlogic.com/
• Price: $295.00 US
• Reviewer: Rob Wehrli

In my quest for a formidable relational database management system that
would run under Linux I came across a pair of applications that fit my wish list
very well. I needed a database that was fast and easy to use, set up and
manage. The system had to work in an Internet/Intranet environment, support
multiple users and be vastly configurable. The cost had to be within my budget.

I tested Empress RDBMS first. Marketed for Linux, it includes several features
that make it a clear choice for discriminating individuals and businesses who
can afford it. I then tested Just Logic Technologies' Just logic/SQL RDBMS, a
product which does not include as many bells and whistles, but does offer core
functionality for about a third of the price of Empress.

The first thing I noticed when the Empress package arrived at my door was 18
bound and 7 unbound (loose-leaf) manuals. This documentation set is fully
cross-referenced and includes titles for the core server installation, server
management and administration, client utilities, 4GL application development
platform, web server interface, ODBC driver, SQL reference, GUI Builder and
much more. The manuals are printed in easy-to-read fonts with page numbers
in bold and chapter data included on every right-side page. Each manual
includes a complete index and a diagram with the entire documentation
roadmap directing attention to the order in which manuals should be
consulted. Empress gets a resounding “A+” for their documentation and
additional kudos for complete man pages that complement their hard-copy
documents.

Installing Empress from the installation diskettes requires basic Unix system
administration experience. While the installation documentation is complete,
the diskettes included a broken cpio command on the label. Nothing too
difficult to overcome—merely an annoyance in an otherwise outstanding
presentation. Installation of the Empress GUI Development and Runtime
requires installation of Motif (libXm) libraries and knowledge of the path to
their locations. Unfortunately, I was unable to test this feature of the Empress
product bundle as my a.out-based Motif libraries were not recognized by the
installation program.

Dismissing the minor installation difficulties and getting to the meat and
potatoes of testing Empress left me pleased with the package contents. Several
utilities, such as the interactive SQL interface and the dBase file import and
export programs, provided me with considerable appreciation for the talent
and foresight of the Empress development group. While every SQL interface is
“interactive”, Empress is truly interactive in that it is capable of, among other
things, prompting the user during table design for specific table attributes and
for related variables. This is enough to excite even the most placid DBA. If you
use the empsql interface for inserting data, it prompts for user input and is
useful as a front end for data input by non-programmers.

Plugging Empress into my particular application required little more than
prototyping a database in Access 7.0 and using the ODBC driver to export the
tables to Empress. This worked with numeric data types quickly and efficiently.
Unfortunately, the Access text data type produces problems when exporting
tables from Access to an Empress database. I did receive a prompt reply from
Empress' e-mail support claiming that this anomaly is due to different
definitions of text data types between Access and Empress and that Access
cannot export text attributes to Empress because of this dissimilarity. It seems
to me that Empress should develop a workaround for developers using
Empress ODBC and Access for database prototyping. Working without a text
data type is not a viable option. One solution for those DBAs using Access is to
export data from Access to a dBase or comma-delimited text file, then import
to Empress using their fine import utilities. I also found no support for varchar
data types.

The first databases I built were simple tests to see how well the Empress
utilities produced desired output. Empress performed flawlessly, and the
Interactive SQL tool is a real glowing ember in a crowded fireplace of functional
components. Their empsql and supporting configuration files allows for custom
user configuration, much the same as configuring an e-mail reader. For
example, I selected joe as my SQL editor instead of the default vi for console-
based edits.

Testing the speed of the database with data imported from a combination of
Empress utilities was very straightforward. I decided that several joined tables
and multiple nested queries would provide a good performance test. Empress
produced results far above my expectations. I was suitably impressed with the
raw speed at which Empress rushed data back to the screen. A search of
810,000 records, where several calculations, conversion of data types and
summing and ordering of resultant sets was required, completed in less than
15 minutes. By comparison, the same query on an SQL server machine(1) took
about 28 minutes.(2)

https://secure2.linuxjournal.com/ljarchive/LJ/041/2073foot.html
https://secure2.linuxjournal.com/ljarchive/LJ/041/2073foot.html

Incorporation of an Empress database into a web environment is accomplished
without hassle using their DataWEB package. Writing HTML forms with Empress
extensions to query the database is straightforward for anyone with a little
HTML experience. My Red Hat 4.0 system, installed with the supplied Apache
httpd server, integrated quite nicely.

My final test, which says as much about Linux as it does about Empress,
included flipping the power switch to the off position in the middle of a query.
After several minutes of waiting while fsck fixed my purposely distorted file
system, Empress recovered without any noted glitches. Of course, I was hoping
to crash the database to test the on-line backup utility, but it would not crash. I
didn't get mad—I got even. I deleted the database, and it restored quickly and
without incident. I was ready to query once more.

Empress also includes a report writer that I was unable to test due to
scheduling limitations.

Lacking in Empress is much of what is lacking from many commercial RDBMS
products today, full SQL-92 support. A point-and-click management tool would
be nice and even recommended, since it is standard fare with Microsoft's SQL
Server. Considering the cost of the Empress package that I tested is about
$1500, it is a bit expensive when compared to the cost of a typical Linux
distribution. However, the ease of use of its utilities and the completeness of its
documentation man pages and on-line help make it a good choice in the
professional world. It is a remarkable product that will benefit the many Linux
users who find it a perfect fit for their needs.

Just Logic

The next candidate in this database duo is Just Logic/SQL. It is compact, easy to
install and use and extremely cost-effective. Priced at $295 for an unlimited
number of users, I found it to be in a value class of its own. Many of the utilities
and niceties included in the Empress package are not found in the Just Logic/
SQL product, but it features a simple and effective SQL interface and robust C,
C++ and pre-compiler interfaces. The sqlweb interface for putting databases on
the Net is an option value-priced at $175.

Installing Just Logic/SQL was as simple as can be. Perhaps the most complex
component for newcomers would be creating a user account and group for the
server/administrator, which is thankfully a point-and- click operation in the Red
Hat Control Panel. Since I downloaded the trial version of Just Logic/SQL from
their web site, the documentation was in Adobe PDF files, which require an
appropriate reader before beginning installation. I liked the searchable PDF
files.

JTL comes with a test database and a warning that it may take a few minutes to
install depending on your hardware. The sample databases are included in
three different formats, each serving as learning examples of how to use the C,
C++ and pre-compiler interfaces. I chose the C version, which installed a small
database in less than two minutes. I assume the warning must be a holdover
for 386 Linux users. I tried the same file on a 486-66 with 32MB and a Seagate
fast SCSI-2 hard drive on a 16-bit Future Domain controller, and it took
approximately three minutes, certainly not as long or as involved as compiling a
kernel. You can probably safely ignore the warning if you are currently driving
any hardware combination built after the Reagan administration.

The documentation provides a simplistic schema for the “abc” sample
database. Something everyone can appreciate is database guru Joe Celkos'
naming conventions—table names are plural and in uppercase, attributes are
singular and lowercase. The Just Logic/SQL sample mixes conventions just
enough to be annoying, but this is rather common in an area where MS-Access-
based converts excel (pun intended).

During testing this product performed very well. Using the same 810,000 record
database and query, it brought back answers in just under 13 minutes.
However, the slight difference in performance is less significant when
compared with the time it took to get the data into the package. While Empress
import utilities handled things in just a few minutes, I spent about 45 minutes
writing a C program to import the data into Just Logic/SQL. Just Logic/SQL
supports varchar data types.

Using Just Logic/SQL in a web environment was another exercise in simplicity.
Installation and setup are a matter of copying the executable into your cgi-bin
directory and editing a sample configuration file with your system details. The
executable must set UID to the database owner, which is accomplished easily
with the documented commands. The sqlweb documentation is clear and
concise. Creating HTML pages for database access using sqlweb is well-defined
with complete examples in the sqlweb.pdf. I was able to access data from the
Linux/Just Logic/SQL/Apache combination from my Linux Netscape browser
within minutes. It is quite exciting to see how fast it works. I spent several hours
writing complex queries and HTML forms pages to see if I could break it.

Just Logic/SQL is perfect for low-budget shops who need a relational database
solution. Students and professionals will appreciate it for its simplicity and
robustness. The SQL, web, C, C++ and pre-compiler interfaces offer enough
choices that anyone can immediately begin using the product to store and
manage data resources. I heartily recommend it for anyone with some
programming experience. The many examples of coding provided on the Just
Logic/SQL web site is a fine starting point.

Conclusions

The bottom line in choosing between these two Linux database packages is one
of cost versus time and user programming capability. Both packages offer
programmers the flexibility to do just about anything they wish with their
respective systems. Both provide data control, manipulation and
administration. Both are performance-oriented and presented no problems as
delivered. Both worked well in networked environments; however, I was unable
to test either of them in a busy multiuser setting. The only thing I would want
from either package is conformance to the SQL-92 standard, although both
currently claim SQL-89 conformance. Both vendors have substantial quantities
of information available on their web sites. I found both of these packages
surprisingly supple and responsive, easy to install, configure and run on Linux
with basic Unix skills. I think you will, too.

Test Platform

Resources

Rob is a systems engineer and longtime resident of Honolulu, Hawaii. He enjoys
playing golf and chess. He can be reached at rowehrlii@pixi.com.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/041/2073s1.html
https://secure2.linuxjournal.com/ljarchive/LJ/041/2073s2.html
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/041/toc041.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Megahedron—A 3D Graphics Environment

Michael J. Hammel

Issue #41, September 1997

Megahedron is a modeler and 3D graphics engine that uses an interpreted
language similar to POV-Ray's scene description language.

• Manufacturer: Syndesis Corporation
• E-mail: syndesis@threedee.com
• URL: http://www.threedee.com/
• Platforms: Intel Linux, Silicon Graphics, Windows NT
• Price: $99US
• Reviewer: Michael J. Hammel

The world of 3D graphics on Linux has come a long way in the past 2 years.
When I first started investigating graphics tools for Linux, there were only a
handful of 3D renderers publicly available and almost no 3D modelers. Since
then the number of modelers has grown significantly (I can count 5 full-blown
modelers currently working plus at least 2 others in development). 3D
rendering tools have also seen a vast increase, with POV-Ray and BMRT (Blue
Moon Rendering Tools) two of the best modelers available for any platform,
heading the list.

Not long ago I came across a new product I had seen announced in the
comp.os.linux.announce newsgroup: Megahedron. I hadn't actually used the

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

product (it was, and still is, a commercial product) but I was intrigued by the
announcement. I had Megahedron on my “list of things to purchase”, when
Linux Journal beat me to it and provided me with a copy to review.

Megahedron is a modeler and 3D graphics engine that uses an interpreted
language similar to POV-Ray's scene description language. It differs from POV-
Ray in a numbers of areas, such as the ability to do wireframe animations on
the fly and built-in network rendering. The package is supported on a number
of platforms, including Windows NT (x86 and DEC Alpha), Silicon Graphics and
Intel Linux. The $99 list price gets you a CD-ROM containing binaries and
complete configurations for each of these platforms. Licensing covers any
machine the purchaser uses with Megahedron, but if another user wishes to
use it, he must purchase his own copy. It's a fairly unrestrictive license, as far as
commercial products go.

Installation

The distributable package consists of a single CD in the customary plastic
casing. All documentation is in HTML format on the CD. There is a single insert
on the CD explaining where to begin in the documentation contained in an
HTML file in the root directory named mhedron.htm. This page is a master
Table of Contents for the complete documentation.

Installation of Megahedron is simple:

1. Choose a base directory in which to install the package, generally, /usr/
local. If the directory does not exist, create it with mkdir.

2. Copy the tar file from the Linux directory on the CD to the chosen base
directory.

3. Unpack the tar archive.

The only problem with installation is that the instructions are listed in the
fourth part of the fourth section of the first chapter of the Manual. The Manual
is the third heading in the Table of Contents. The second entry in mhedron.htm
is a “Quick Tour”. This tour suggests making changes to source code, which
can't be done directly from the CD, so you must first do the installation. The
installation also says to “decompress [the package] from your hard drive or
directly from the CD.” This is not quite correct since the package is not
compressed—it's simply a tar archive. Despite these oversights, the installation
is relatively straightforward.

Documentation

Unlike many of the free packages available, Megahedron comes with oodles of
documentation, all of it on-line on the CD and formatted in HTML. This is a nice

bonus, since you can print the pages of interest from your browser. Most of the
HTML documents print out as no more than 7 to 10 pages, which isn't too bad.
Most impressive is the sheer amount of information provided.

The master Table of Contents contains links to five other areas: an introduction,
a Quick Tour, an art gallery, the user's manual and sample source code. The
Quick Tour provides a glance at some of the modeling, animation and
procedural aspects of the interpreted language, called SMPL (Simulation and
Modeling Programming Language). The tour is rather interesting. I found the
train wireframe-animation particularly interesting, since most other tools I've
seen don't offer such features (a notable exception is the rendribv program in
the BMRT distribution).

The art gallery is not very impressive from an artistic point of view. The images
present the modeling capabilities of Megahedron much better than the shading
capabilities; future versions should explore the various shading capabilities
provided by SMPL. This lack may be simply because the people who created the
images are more technically than artistically oriented, but really useful 3D
images should present a good blend of technical and artistic aspects. Some of
the images from the art gallery are shown in Figures 1 and 2. Listings for the
HTML code that goes with them are not printed in this article but are available
by anonymous ftp in the file ftp.linuxjournal.com/pub/lj/listings/
issue41/2282.tgz

Figure 1. Megahedron Cactus

https://secure2.linuxjournal.com/ljarchive/LJ/listings/041/2282.tgz
https://secure2.linuxjournal.com/ljarchive/LJ/listings/041/2282.tgz
https://secure2.linuxjournal.com/ljarchive/LJ/041/2282f1.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/041/2282f1.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/041/2282f1.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/041/2282f2.large.jpg

Figure 2. Megahedron Roadster

An attempt was made to color-code the sample SMPL source, but the result is
somewhat limited. There is quite a bit of code for experimentation purposes,
although I have to admit I didn't run much of it.

The meat of the documentation is in the manual, a seven chapter document
plus an Index, Glossary of Terms and SMPL Grammar Appendices. The seven
chapters cover modeling and rendering aspects in fair detail. I'd like to see
these two areas broken out into separate areas; Megahedron has merged the
modeler with the renderer just a bit too much for my taste. There is also a good
deal of material covering the use of shaders.

Features

Megahedron is feature-rich. The section of the documentation titled “What is
Megahedron?” gives a detailed list of features, including:

• The SMPL interpreted, procedural language
• A programmable shading language (which uses SMPL)
• Rendering modes from wireframe to full ray tracing
• Various projections, including a fisheye projection
• Simulation capabilities such as collision detection and ray intersection
• Network rendering

https://secure2.linuxjournal.com/ljarchive/LJ/041/2282f2.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/041/2282f2.large.jpg

This is not the complete list, of course, but it should give you an idea of the
range of capabilities available.

SMPL

SMPL is the programming language for Megahedron, and it looks a little like
Basic. It's fairly intuitive if you are familiar with tools like POV-Ray or BMRT and
with vectors, object primitives and transformations. If you are not, there are
plenty of simple examples to get you started and the glossary and indices in the
manual will help you find the way through the source code.

An SMPL program has the following general format:

do task2, task3;
<include files>
integer a;
procedure task1 is
 <declarations>
 <statements>
end;
procedure task2 is
 <declarations>
 <statements>
end;
procedure task3 is
 <declarations>
 <statements>
 task1;
end;

Declarations include data, type and subprogram declarations. Statements
include object declarations and instances, transformations and so forth.

The data types supported by the language are fairly intuitive, but are slightly
different in syntax from RenderMan and POV. In the RenderMan RIB file format,
a string type is a String, whereas Megahedron uses char. As you can see, the
data type is obvious. RenderMan uses point to specify a set of 3 points in space,
each of which is a float value. Megahedron uses the type vector for the same
thing. POV, on the other hand, doesn't really have data types. All variables have
declared values that get preprocessed before the code is processed,
substituting the declared value for the name of the variable. Which method is
better depends on the user's preference. I like defined data types because type
checking can be done up front. Megahedron's use of the const statement
allows for enumerated values, a nice addition that doesn't appear possible in a
RIB file. (Although if you use the RenderMan API, you're writing C code, so
enumerated types are not a problem.)

Subroutines are supported with the use of the procedure statement. Scoping of
variables is much like C scoping, with variables accessible locally or globally, but
not across procedures. Procedures are delimited with the procedure and end

statements. There is support for static variables in procedures as well as
multidimensional arrays.

The language has one annoying aspect: it uses curly braces for comments. I've
used quite a number of languages over the past 10 years and can't remember
any that used curly braces for comments. The traditional C and C++ comment
markers of #, /**/ and // would, in my opinion, have been better.

One weakness in the documentation is the description of the file I/O routines.
Although file I/O is possible, it's not clear how to output model information to a
file. A few examples for outputting model information would have been a nice
addition. After all, since I prefer using BMRT's renderer over Megahedron's, I
need a way to output RIB files in order to use SMPL for modeling. Rendered
images can be saved in RAW or TGA (Targa) formats. I found this information in
the section on “Display Controls”, not in the section on “File I/O” as I expected.
While perusing one of the system files, smpl_prims, I found that support is
implied for the JPEG format as well, but I didn't find confirmation of this
elsewhere.

Modeling Features

As with RenderMan's RIB and with POV-Ray, an SMPL file is a collection of
sections describing a 3D scene. In SMPL you have sections for defining the
camera and rendering options (similar to the sections outside the WorldBegin/
WorldEnd statements in RenderMan), object declarations, still frames and
animation. Still frames are really the guts of the scene, where objects are
instanced, textured, transformed and so forth. The proceduralism of SMPL
allows for declaring objects once and instancing them many times throughout a
frame. For example, a single ball might be defined as a sphere with holes cut
out of it that can be used to instance 100 spheres in various states of unrest for
a single frame.

An important part of any 3D rendering system is its ability to do
transformations. Transformations allow an object (a sphere, box or more
complex figure) to be moved to its location in 3D space prior to the actual
rendering of the image, or to be sized or modified in shape (stretched or
skewed, for example). Megahedron allows objects to be transformed relative to
their current size and position or absolutely. Absolute transformations specify
the exact size or position without regard to the current size or position.

Transformations are specified using the with clause for objects, as follows:

<object name>
 with
 <transformations>
 end;

Transformations can be nested, and the relative transformation is based on a
transformation stack, much like RenderMan or POV-Ray. Instancing an object
gives it the current transformation state, and new transformations are made
within the instance that apply only to that particular instance or any instances
created below it. In other words, it's a hierarchical model. If you're familiar with
POV or BMRT, you should have no problems learning the syntax and use of
transformations in Megahedron.

One difference between RenderMan and Megahedron is how camera
transforms are done. In the latter, the camera is actually moved. This is similar
to the way POV handles camera transforms, but different from the way
RenderMan handles it. It's important to understand what is being moved when
using transformations in any 3D package.

Lighting primitives supported include distant point lights, spot lights and
ambient lighting. These are the same lighting types supported by POV and
RenderMan. Each type has its own parameters, such as brightness (known as
“intensity” in RenderMan) and color. Lighting in RenderMan is handled through
the use of shaders, so it's possible to create all manner of lights for use with
BMRT. Megahedron appears to offer similar functionality, although I didn't
delve into this area much.

One of the nicest features is the live animation capability. Wireframe displays,
which can include hidden surface removal, can be run interactively. Interactive
displays can also make use of mouse and keyboard input to control the display.
There are examples provided that show exactly how this is done.

Programmable Shading

As with any 3D environment, modeling is not enough. Wireframe displays
provide a glimpse of what your scene (or animation) will look like, but without
extensive shading the model appears rather uninteresting. Megahedron
provides a rich set of shading features: ray tracing using reflections, refractions
and shadows, and image, bump and procedural mappings to name just a few.
A collection of stock shaders such as granite, ridged and cloudy is provided.
Targa (TGA) formatted image maps are supported. It's interesting to note that
Megahedron maps all image map coordinates from (0,0) to (1,1), with the
former being the lower left corner of the map. RenderMan maps (0,0) at the
upper left and (1,1) to the lower right. If you're used to using BMRT, it is
important to keep this in mind when using Megahedron image maps.

The shading language is closer to the RenderMan shading language than POV-
Ray's texturing commands. This can be seen in the examples used in the
“Anatomy of a Shader” section of the manual. Here colors are defined through
the addition of values computed earlier, such as:

diffuse = (illumination + ambient) * color * .3;
specular = reflect (color * .4);
highlight1 = highlight1 * color;
highlight2 = highlight2 * color;
metallic_color = diffuse + specular + highlight1
 + highlight2;

This method of layering textures is different from POV-Ray's. In POV, an object's
final texture is based on a series of textures defined within multiple texture{}
statements. In a sense, the two methods are the same computationally, but
from a users perspective the blending of layers is more apparent and under
greater control in the procedural languages (Megahedron and RenderMan). If
you started with POV, as I did, you may find this a bit confusing at first. Once
you've learned how layering textures works with Megahedron, however, you'll
appreciate the control it provides.

There are a number of predefined shaders provided in the distribution. In the
system directory there are some extensions to SMPL (written in SMPL),
including some interesting shaders such as “vampires”, which don't show up in
mirrors, and “ghosts”, which only show up in mirrors. These shaders look rather
interesting, and I have to wonder why the sample images don't appear to make
use of them.

One important difference between the BMRT, POV and Megahedron feature
sets is that only BMRT supports displacement maps. These are like bump maps
except the point on the surface is actually moved instead of just adjusting the
normals of the point to make the surface appear bumpy.

The Quick Tour

I like this aspect of the documentation, but it has some usability problems. First,
the tour points to sample directories as smpl/<directory>. This is incorrect—
there is no smpl directory. The tour also (unless I missed it) fails to mention that
the system specific directories are the top level directories on the CD. Under
the system directories is the mhd directory where the examples, code and
system files are located. It can be a little confusing to find your way if all you do
is read through the Quick Tour—be sure to look through the CD directory
structure first.

Another rather interesting omission is that the Quick Tour doesn't mention the
name of the program you will be running. After a quick search under the Linux
directory on the CD, I found the bin directory and the imhd program.

There were lots of problems running the examples. ideal_gas, sonic_boom and
slicer.smpl are all examples that take input from the mouse. At first nothing I
did seemed to affect the example; eventually, I found I had to move the mouse
slightly for the button presses to be recognized. This might be an X-server

issue, but I think the problem is really the hot spot area defined by the SMPL
code. It appears that the area that recognizes the button press is smaller than
the visible button area.

While writing this review, I often switched desktops (I use FVWM2) between the
xterm running my editor and another running Netscape in order to read
Megahedron's documentation with the browser. I also ran the sample
programs on the same desktop as Netscape. Whenever I switched to my editor
desktop and then back to the Netscape desktop, some of the windows for the
sample programs didn't get updated. For example, sonic_boom.smpl creates
two windows—one that shows an aircraft and “sound waves” moving past it
and another that shows controls for setting the thrust of the aircraft along with
current speed displays. This second window would not be redrawn when I
switched desktops. The ideal_gas example had similar problems, but I found I
could get the control window to update if I forced a change to the display by
moving the piston up or down. This limits the usefulness of the interactive
programs with window managers that support multiple desktops.

Another minor nit is that windows created by the examples are not grouped. As
a result, my window manager's AutoRaise feature does not raise all the
windows associated with the example. This can be a little annoying, but it's a
minor point.

Summary

Overall I found the feature set of Megahedron to be quite extensive. The
documentation blows away anything else I've seen for a tool of this nature. I'm
constantly looking for tools which can easily be picked up by a novice user.
Megahedron certainly falls into this category simply on the strength of the
documentation and sample programs. It is, however, not perfect. See Sidebars
1 and 2 for lists of Megahedron' pros and cons.

Megahedron Pros

Megahedron Cons

At one point the “Introduction to 3D Coordinates” says it is not necessary to
know algebra or trigonometry to use Megahedron. Possibly true, but without
either what you can do with Megahedron will be severely limited. Face it,
knowing how to place objects in 3D requires not just an understanding of
geometry, but trigonometry as well.

One area I didn't cover in this review is the rendering engine. I didn' do many
full renders due to time constraints on my system. (I had other renderings
running and needed to keep a little system time for other work.) If you get a

https://secure2.linuxjournal.com/ljarchive/LJ/041/2282s1.html
https://secure2.linuxjournal.com/ljarchive/LJ/041/2282s2.html

chance to try Megahedron and can compare it with BMRT and/or POV-Ray (or
any other renderers that run on Linux) feel free to write it up and pass it on to
me. Chances are good I'll include it in a future “Graphics Muse” column in Linux
Gazette.

Despite the problems mentioned, I think Megahedron would be a good way for
new users to get started with 3D images. Experienced users might find the
animation capabilities quite useful as well, although the animations might not
be as impressive with the builtin renderer. It's difficult to say without more
detailed images that make full use of the shading language. The documentation
is quite extensive and well written and the licensing is user friendly. I would
recommend this package to anyone interested in learning more about 3D
graphics.

Michael J. Hammel is an X Windows and applications software engineer for
EMASS in Denver, CO. He is the author of the “Graphics Muse” column in the
Linux Gazette, keeper of the Linux Graphics Mini-HOWTO and co-author of The
Unix Web Server Book from Ventana. His interests outside of computers
include 5K/10K races, Thai food and gardening. He suggests if you have any
serious interest in finding out more about him, you visit his home pages at
http://www.csn.net/~mjhammel. He can be reached via e-mail at
mjhammel@csn.net.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/041/toc041.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Solid Desktop 2.2 for Linux

Bradley J. Willson

Issue #41, September 1997

In the process of reviewing Solid Server, my understanding of database
technology changed as my level of knowledge elevated.

• Manufacturer: Solid Information Technology Ltd
• E-mail; URL: info@solidtech.com; http://www.solidtech.com/
• Price: $99 US for single user
• Reviewer: Bradley Willson

When I installed Solid Server on my computer, I expected to find an application
similar to Microsoft Access. Instead I found more “and” less. Solid Server has
more raw “horsepower”. It is a race-ready engine waiting for a chassis. I
discovered that Solid Server ships without the chassis. The task of “chassis
building” (application development) is left up to the programmer. Solid Server's
adaptability makes it easy to integrate into the customer's “chassis”. The end
result is a database application that is capable of taking on the competition and
winning.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

In the process of reviewing Solid Server, my understanding of database
technology changed as my level of knowledge elevated. I quickly realized I was
dealing with a product possessing capabilities beyond my experience. Thanks
to SSC's info@linuxjournal.com, I was able to recruit Rob Wehrli to help validate
SQL standards and some of the technical aspects of the review. This review is
the product of our e-mail collaboration across the Pacific. The screen-shots are
from an interface application Rob is using with Solid Server.

Solid Server for Linux 2.2 is powerful, extensible and extremely capable of
serving database requirements ranging from a simple desktop application to a
corporation-wide business integration. The combination of Solid Server's file
handling capabilities (which reportedly extend into the 30TB range), multiple
platform availability and extensive communication protocol suite makes Solid
Server 2.2 an intelligent choice for a wide range of applications. I was unable to
test the 30TB claim and networking capabilities because of my limited
resources; however, judging from the list of companies using Solid Server, I am
inclined to agree with these claims.

There is strength in numbers. Solid has ported its server to Linux and at least
seven other popular platforms. Their installed base reads like a “Who's Who” in
the global marketplace, giving one the feeling that this product is the proverbial
“better mouse trap”. Names like Nokia, CompuWare and Tallahassee, Florida's
Department of Highway Safety and Department of Motor Vehicles appear on
their roster. Deutsche Telekomm, a major German telecommunications
company, has purchased a large number of Solid licenses specifically for Linux.
Solid Server is even embedded in Kone Elevator's control systems. Many of
Solid's business customers and strategic partners have WWW sites, making it
easy to gather references and additional information about the product. Kone
Elevators maintains a web site at http://www.kone.com/ containing more
information about their products and EleVision, their integration of Solid
Server.

Communication is the heart and soul of Solid Server. For example, a database
created on an NT platform can be moved, without conversion, to a Solid Server
running on a Linux platform. Furthermore, the same database can be accessed
by one or more client applications simultaneously, via any of seven common
protocols, over a network or on one machine. The login screen-shot displays a
simple interface to a networked database. Solid reports compliance with Entry
Level SQL2 syntax, significant features from Intermediate Level SQL2, SAG CLI
standards. The API also features 16 and 32-bit ODBC drivers and Solid's own SA
interface, giving the customer the added flexibility to integrate Solid Server
within existing structures with minimal conversion. The query screen shot

shows the SQL instructions used to extract the data shown in the result set
example.

Data integrity is only as good as the steps taken to preserve it. Solid Server
accomplishes this task using automated backup, concurrent logging and check
points. Few applications can recover from a surprise shutdown, but Solid Server
lost nothing during my testing. It is safe to say a stand-alone installation of Solid
Server will survive most, if not all, system surprises. My system logs reported all
of the recoveries as successful. Furthermore, the recovery process was so quick
I hardly had time to read the extra line displayed.

This game belongs to the quick—Solid Server is fast. On a Pentium 75 with
20MB of RAM, it processed my small examples instantaneously. There was no
appreciable degradation in performance as I added more and more
information to the database. My test bed is humble by today's technology
standards, but Solid Server performed beyond my expectations. It consistently
returned result sets in a matter of seconds. Rob's result set screen-shot depicts
results from a significantly larger database.

Assessing the quality of the documentation was an important aspect of my
review process. Because my idea of a database was defined by Microsoft
Access, I decided it would be wise to read Solid's documentation. The effort
paid off and I gained a better understanding of how SQL and true relational
databases work. The books and HTML documents are written with a focus on

Solid's Windows versions. As I read the documentation, I felt I was in familiar
Windows territory, yet I was constantly translating terminology from the
Windows environment to Linux equivalents. This is one aspect of Solid Server I
would like to see improved. I recommend moving the referenced README files
to the printed and HTML pages, merging them into the context as appropriate.

If you have questions, there are several options to explore. You can contact
Solid's technical support through your local distributor who may offer a toll-free
number or e-mail address. You can call Solid Information Technologies, Ltd. in
Helsinki, Finland, or send an e-mail to their headquarters tech support. Solid
does not offer a toll-free number. I sent e-mail directly to Solid on two
occasions and received answers within 24 hours each time.

Solid Server 2.2 is value priced. The extensive list of features and capabilities
give the Solid Server consumer an excellent return on his investment. Priced at
three levels—$99 US per single user, $199 US per seat for multiuser and $495
US per server with Web- enabling option—this RDBMS is affordable for small
businesses and large corporations alike.

Solid's decision to port to Linux complements the growing number of
professional mainstream products that make Linux a respected contender for
mission-critical business requirements. This is a tremendous benefit to the
Linux community. It reinforces the value of Linux in the global market and
generates renewed interest in applying Linux in place of other more costly
operating systems. Solid Server's open platform architecture is making it easier.
The informed purchase decision can no longer be based entirely on “which”
RDBMS product to buy, but must also consider on which platform it will be
used. Given Linux's return on investment, one begins to lean toward “free”
Linux. Solid Server 2.2 raises the bar for competing RDBMS producers and
demonstrates a strong commitment to Linux as a world-class operating system.

I give Solid Server for Linux v.2.2 a “solid” two thumbs up.

Bradley J. Willson currently designs and troubleshoots tooling for the Boeing
777 program. He owns and operates Willson Consulting Services and in his
spare time listens to jazz and plays guitar. He can be reached via e-mail at
cpu@ifixcomputers.com.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/041/toc041.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Beginning Linux Programming

J. Mark Shacklette

Issue #41, September 1997

The book is an achievement both in terms of its subject coverage as well as its
surprising depth for a text whose focus, as the title states, is the neophyte.

• Authors: Neil Matthew and Richard Stones
• Publisher: Wrox Press
• Pages: 710
• ISBN: 1-874416-68-0
• Price: $36.95
• Reviewer: Mark Shacklette

Every once in a while a book appears which so perfectly fills a void that its
acceptance is all but guaranteed. For Linux programmers or anyone interested
in learning Unix programming, there is a new volume to add to your library:
Beginning Linux Programming by Neil Matthew and Richard Stones. The book is
an achievement both in terms of its subject coverage as well as its surprising
depth for a text whose focus, as the title states, is the neophyte. The authors'
aim is “to cover enough about a wide range of topics to give you a good
beginning in each subject.” In this they succeed magnificently. Inside are full
chapters on shell programming (/bin/sh), an introduction to the Unix file
system, terminal I/O, the curses library and a chapter on processes and signals.
There is a chapter on how to use the GNU gcc compiler, the gdb debugger,
make, RCS and other development tools. (They even teach you the basics of
how to write a man page for all those new applications you'll write after
mastering Linux programming.) The authors cover Linux's X/Open-compliant
dbm database (some distributions have gdbm, the GNU flavor of dbm). They
devote one hundred and fourteen pages to interprocess communication alone,
including pipes, FIFOs, System V IPC (Semaphores, Message Queues, Shared
Memory) and Berkeley sockets. There is a 93-page introduction to X
programming which focuses primarily on Tcl, Tk and Wish, along with a sip of

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

Java. The book concludes with two chapters devoted to Internet programming,
one covering HTML and the other CGI.

With such a vast scope, something had to be left out. Coverage of Expect is
assigned to two short paragraphs. Python is missing, as is the majority of Motif
programming outside of Tcl/Tk (Xlib and Xt are only mentioned in passing). The
only coverage of Perl is an example CGI script, and the section on Java could
pass by you entirely, if your nose is not careful to pick up the scent of the fresh
brew at the close of the discussion of X programming. (Interesting that Java is
appended to X programming, not the Internet programming chapters.)
Nevertheless, such focus is necessary to avoid a text of several volumes and to
concentrate on the omissions would be to miss the point of the work, which is
to introduce you to Linux programming through the use of hands-on code
examples, which are graduated and presented in a step-by-step fashion. Each
new topic is presented in a few short paragraphs and is followed by a succinct
but complete “Try It Out” code example.

Over 10,000 lines of source code fill the pages, all of which are available for
download (the ubiquitous CD is missing from the back cover). With such a
supply of source code, the usual peccadilloes occur, such as a case statement in
the section on shell programming, that lists the case as “[nN]*” (with quotes)
instead of [nN]* without the quotation marks (the former fails if you enter
anything beginning with a n or a N); or when, during the discussion of pipes,
the line:

sprintf(buffer, "Once apon a time, there ..."\n)

is magically spell-checked to “Once upon a time” in the book's output listing
(unfortunately, my compiler isn't as smart as the editors and keeps the spelling
as “apon”). All in all, the source code compiles and runs fine. Wrox Press, the
publisher, has the source and a sample chapter on its web site for your perusal,
at http://www.wrox.com/.

The example code gets to the point. The authors present the minimum amount
of code to illustrate an idea which, once given, is quickly summarized as they
move on to the next extrapolation or improvement. This approach allows the
new Linux programmer to get a firm grasp on the subject without too much
diversion or interdependence. All examples are self-contained and may be
compiled and run—there are no code fragments here. Such an approach
facilitates and encourages the reader to experiment with the code examples,
since they are so confined few side effects can be introduced, even by the most
intrepid of newbies.

Although most of the examples are focused, the authors do present and
develop a larger application that implements a simple audio CD cataloging

program. The application begins life early in Chapter 2 as an extremely simple
shell script that exercises the use of flow-control statements in shell
programming and uses simple text files for a database. The application
reappears in Chapter 6. This time rewritten in C with the same functionality as
the shell script version and with a new interface designed to exercise the curses
terminal library. In Chapter 7, the application acquires a real database, dbm. In
Chapter 11, the application evolves into a small client-server system, which
separates the database from the user interface through the use of named
pipes. This example illustrates process synchronization and bi-directional data
flow between a single server and multiple clients. In Chapter 12, the application
substitutes a message queue for the named pipes from the previous chapter,
which solves some problems with I/O synchronization previously encountered
with named pipes. Finally, the CD application takes to the Web in Chapter 17 as
an example of an HTML interface talking out a CGI layer to the database server.
This chameleon-like application greatly enhances the communication of many
of the principles presented in the book.

In short, Beginning Linux Programming is a tutorial on the major topics in Linux
programming. If you are willing to spend some time getting up to speed, you
will find yourself with a book that not only will hold your hand in the midst of
the Magic Garden, but will eventually provide you with a fine pair of walking
shoes, well preparing you for your own explorations. With this book at your
side, as my son's beginning reader puts it:

You have brains in your head.You have feet in your shoes.You can steer
yourselfany direction you choose.

Mark Shacklette is a Principal with Lake Shore MicroTech Group, a Chicago-
based consultancy specializing in client-server development in Unix and
Windows NT. When he's not with a client, he works on his Ph.D. in the
“Committee on Social Thought” at the University of Chicago. He lives in Des
Plaines, Illinois with his wife Karen, son David and two cats. He can be reached
at jmshackl@midway.uchicago.edu.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/041/toc041.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Linux Configuration and Installation, Second Edition

Harvey Friedman

Issue #41, September 1997

Linux Configuration and Installation is a book/2-CD package that includes the
Linux 2.0.0 kernel, the Slackware 96 distribution, numerous games, utilities and
programs.

• Author: Patrick Volkerding, Kevin Reichard, Eric F. Johnson
• Publisher: MIS: Press
• Pages: 522
• Price: $39.95
• ISBN: 1-55828-492-3
• Reviewer: Harvey Friedman

The obvious question that a potentially interested reader might have when
seeing a second edition of a useful book is “What are the changes and have
they improved on the first edition?”

Linux Configuration and Installation is a book/2-CD package that includes the
Linux 2.0.0 kernel, the Slackware 96 distribution, numerous games, utilities and
programs.

The general outline of the book is the same as in the first edition; that is, it
includes sections on “Linux Installation & Configuration”, “Using Linux”, “Linux
Communications and Networking” and “Linux Programming”. However, the
chapters within these sections have been revised extensively, both in order and
content.

The first section, “Linux Installation & Configuration”, contains three chapters.
Chapter 1, Linux and PC Hardware, is roughly the same with some newer
hardware covered. Chapter 2, Installing Linux, is largely revised with an
emphasis on an MS-DOS or Windows-based installation. A new feature is a
section on starting Linux from Windows 95, but since I refuse to use Windows

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

95, I can't comment on whether this option works. There is also a section on
upgrading from a previous version of Linux. In essence, the author
recommends removing the old version entirely, particularly if you are going
from a.out to ELF. I did this but failed to realize that the new version took much
more space for the same packages; thus, my 120MB partition filled before the
packages had all been installed. I had to repartition my disk before the new
version would install properly. I think it would have been helpful to have the
expanded size of all the Slackware disk sets listed, so that partition size could
be better estimated. Chapter 3, Installing and Configuring XFree86, does a fairly
good job of explaining X. The text describes in detail how to use xf86config
without indicating its location; a less experienced user would probably not
know to look for it in the /usr/x11/bin directory. This chapter was both 3 and 4
in the first edition.

The second section of the book, “Using Linux”, contains chapters 4 through 6.
Chapter 4, Basic Linux Tools, is pretty much the same as Chapter 5 of the first
edition.. Chapter 5, Linux Applications, is an expanded version of the first part
of Chapter 7 from the first edition. Included are the introduction to Ghostscript
that Steve Wegener asked for in his review of the first edition that appeared LJ
(Issue 23, March 1996), a discussion of Mtools for MS-DOS file systems, some X
applications and emulators for various older computers including DOSEMU
0.60.4. Chapter 6, Basic Linux System Administration, expands on the material
in the last part of Chapter 7 from the first edition. It is well written and draws
upon other Unix writings of Reichard and Johnson.

Section 3, “Linux Communications and Networking”, contains Chapters 7
through 9. Chapter 7, Linux and Telecommunications, was part of chapter 8 in
the first edition and deals with serial communications using seyon, minicom,
xminicom and rzsz. It is a short, 13-page chapter. Chapter 8, Linux Networking,
is an even shorter 5-page chapter covering TCP/IP. It is assumed that the
computer is directly cabled to the network via an Ethernet card. Chapter 9,
Linux and the Internet, covers dial-up IP connections, electronic mail, the World
Wide Web and web browsers, UUCP, FTP, telnet and Usenet newsgroups. I think
that the discussion of dial-up IP would have fit better into Chapter 7.

Finally we have Section 4, “Linux Programming”, which consists of one chapter,
Chapter 10, Programming in Linux. This appears to be the same Chapter 10
from the first edition. It is replete with short examples and simple explanations
for many tools, including cc, make, LessTif, Tcl/Tk, Perl, gawk, etc.

There are two CD-ROMs included with the book, but the page describing the
contents of each is missing quite a bit. There is almost no description (it stops
after a few words of a sentence) of what is on the first CD (it's a fairly standard

Slackware 96); however, there is a decent description of the second. The
directory of the first one is shown in Listing 1.

To quote the page for the second one, “The second CD-ROM contains useful
source code (and in some cases, precompiled binaries) for Linux/UNIX
applications and utilities mentioned in the book, as well as selected archives
from sunsite and tsx-11”. Some of the more interesting programs included, in
the order of the page listing, are diald, slirp, several email handlers, WINE and
NTFS, POV-ray, several multimedia and/or image processing programs,
networking packages including Apache and Samba, office packages, LessTif,
Mesa, Java, Perl-5.002, applications, xwatch and other window-managers.

This book/CD-ROM combination is a definite improvement over the first
edition, offering more information and better explanations. One further
addition that I think would improve the product considerably relates to a
sentence on page 243: “As a matter of fact, when you installed Linux, you
unwittingly set up dozens of linked files...”--unwittingly is problematic. Having a
list of all the links, particularly non-standard ones belonging to other Unices,
and a list of important files in non-standard locations would make it much
easier for experienced Unix users to recommend Slackware as highly as other
distributions.

All in all though, if one intends to use Slackware 96, particularly with no
previous Unix or Linux experience, this book/CD-ROM is the one to buy.

Harvey Friedman is a computer consultant at the University of Washington,
functioning either as system administrator or statistical analyst. Currently his
work requires data analysis using SAS on large datasets. He doesn't spend as
much of his leisure time as he'd like playing with Linux, because orienteering,
the sport of navigation, is so much fun. He feels going from staring at a
computer screen to moving oneself through the forest is a great way to retain
sanity. He can be reached via e-mail at fnharvey@u.washington.edu.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/041/2100l1.html
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/041/toc041.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Building an ISP Using Linux and an Intranet

Eric Harlow

Issue #41, September 1997

This article describes how you can start an ISP and/or create an Intranet using
Linux and a dedicated 28.8 connection.

I became the founder of a small ISP for the Baltimore, Maryland area by
accident. My wife and I had been having trouble finding a cheap and reliable
Internet access provider. After endless frustration with busy signals, we decided
to get a dedicated 28.8 line and use it as our connection to the Internet. The
connection would always be up and available, and we could both use it to surf
the Internet. It seemed natural to take the next step and provide access to
others. Beyond helping people get on the Internet and giving me technical
experience with Linux, it could provide us with a source of revenue to recoup
some of the costs. Before you decide to become an ISP and make lots of
money, however, I should warn you competition is fierce and we are not yet
profitable.

The Internet server setup we have is a simple one: a Linux machine with four
incoming lines for dialup and one outgoing line to maintain the dedicated
connection. We currently support about twenty users on the machine. Although
simple, this setup could present a problem: if four users dialed in, each would
receive (28.8/4) = 7.2Kbps for his or her connection. Most of the time, however,
only one user is logged onto our machine, and he receives full bandwidth. In
addition, when multiple users are logged on, one may be downloading or
composing e-mail, another might be reading a web page and a third may have
walked to the bathroom.

One of the first steps you need to take to build a Linux Internet server is to
recompile the kernel with networking on, IP forwarding/gatewaying on and any
additional drivers selected. We have a network card and a Cyclades Cyclom
16YeP card (a multiport serial card) on the Linux machines, so we have those
options turned on. When you turn on the IP forwarding/gatewaying, it enables

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

the Linux machine to forward packets it receives over your network to the
Internet.

Another important step during setup is to get an account with your ISP that
supports point-to-point protocol (PPP). You can get a dedicated 28.8 connection
for about $100/month that will provide you with full access to the Internet for
your network. It is also preferable that you sign up for a static IP address or a
Class C address and a domain name. A static IP address lets you log on to the
Internet with the same IP address all the time. We have a Class C address, so
this discussion uses only the Class C address. A class C address gives you a
block of addresses (255) you can use to set up your internal network (Intranet).
If you don't have a Class C address but rather a static IP address, you'll have to
use IP Masquerading to access the Internet from your LAN. [See “IP
Masquerading with Linux” by Chris Kostick in the July 1996 issue of Linux
Journal—Ed.]

We started building our Internet server by calling our ISP and signing up for a
Class C address with a domain name and a dedicated 28.8 line. After we
received our Class C address block (206.156.217.*), I picked one of the
addresses for our host (206.156.217.10) and proceeded to set up our network
using the netconfig utility bundled with Linux.

Your ISP should be able to maintain the Domain Name Server (DNS) entry for
your machine. The DNS entry allows Internet surfers to access your IP address
using your domain name. IP addresses like ours (206.156.217.10) are hard to
remember and non-descriptive; the DNS entry allows surfers and customers to
reach our machine using NetBrain.com without knowing the IP address.

In the resolv.conf file, there should be a listing of the domain name servers
you'll be accessing. The file should look something like:

#resolv.conf
Nameserver 206.156.208.2
nameserver 206.156.208.8

Setting up PPP

Using the ppp-on script (part of the pppd package), you establish how your
want your PPP connection set up. The ppp-on script is shown in Listing 1. You
use this list to set up parameters such as the IP address of your machine and
the host machine, whether you're running pppd on a modem or through a
network, and the device you're using to make the connection. The ppp-on script
calls the ppp-on-dialer script which actually dials the modem to connect to your
ISP. The ppp-on-dialer uses chat, which dials the modem and also handles
getting past the ISP's startup screen (user name, password). (Passing the 0.0.0.0

https://secure2.linuxjournal.com/ljarchive/LJ/041/2025l1.html

as a parameter for the remote is another way of saying “we don't care.”) The
important parameters in the ppp-on script include:

• 115200—serial port speed—this doesn't mean your modem is as fast, but
with some compression, it might get close.

• /dev/ttyC2—your modem'd port default route—specifies this connection
is the default route out of the machine, if it can't find the address locally.

Listing 2. ppp-on-dialer Script

Note that the chat has the ogin my_login and assword: my_password lines. This
is chat's way of saying, “If you see ogin: then type my_login; then when you see
assword type my_password.” You'll have to dial in manually to your ISP using a
terminal program to see how this login screen looks.

If you type ppp-on and hear the modem dial and connect, you've taken your
first step to running an Internet server. When PPP is running, you should be
able to ping one of your ISP's machines from the Linux shell. A good address to
ping is your ISP's DNS machine.

If ping is successful, try to see if TELNET works. A simple check is to telnet to
one of the MOO sites (telnet baymoo.org 8888). If that works, you are
connected and being routed correctly. If you have an account on another
machine, you can also test the incoming connection via TELNET. This is more a
test to make sure your ISP has the correct DNS entry. If you get the Unknown

host error, either your ISP didn't put the entry in or it hasn't made it out—
sometimes it takes a few days to make it to all the other machines.

Connecting Other Machines to Your Server

Once your connection to the Internet is stable, it is time to connect your
network. Your Linux machine and your other machines should all have network
cards installed, and your Linux machine should have the kernel compiled with
the appropriate drivers.

Suppose you want to set up Doofus (a Windows 95 client) and hook into your
network to give it access to the Internet. Pick an IP address for Doofus of
206.156.217.7 (it can be any number available within your Class C block). To set
up the Windows 95 machine to access your Linux server, you must go into the
Control Panel and pick Network. Make sure TCP/IP is bound to your network
card. The Properties button lets you set up the following items on each of your
machines:

• IP Address: If you have a Class C address, you can assign an IP address
206.156.217.7 and a subnet mask of 255.255.255.0.

https://secure2.linuxjournal.com/ljarchive/LJ/041/2025l2.html

• DNS Configuration: Pick Enable DNS and give your machine the name
Doofus for the host and NetBrain.com for the domain. This setup
provides the Windows machine with the name Doofus.NetBrain.com—or
read another way, Doofus is within NetBrain.com. The DNS Server Search
Order should have your DNS entries added to be the same as the Linux
server's /etc/resolv.conf nameserver entries.

• WINS Configuration: Pick Disable WINS Resolution

• Bindings: Add a gateway to your Linux machine. The gateway helps your
machine find its way out of the network and onto the Internet. We added
206.156.217.10 to the list of installed gateways.

Test Your Windows 95 Client

After you've rebooted your Win95 machine, you should be able to ping it from
your Linux host using ping 206.156.217.7. If it fails, possible problems could be
the cable, Linux drivers, Win95 drivers or your Win95 configuration. Now from
the other side... When you're ready to test your Windows 95 client, open an MS-
DOS window and ping your server. The command ping 206.156.217.10 should
get a response from your server. You should be able to TELNET to your
machine (telnet mickeymouse.com) and should also be able to bring up a
browser and go to any web site that interests you. It's that easy.

Multiport Serial Card for Dial-up Access

Most personal computers have only two serial ports, and one of those is usually
used by the mouse. The best way to provide dial-up access is to purchase a
multiport serial card. We use the Cyclades Cyclom 16Yep card, which provides
16 serial ports for modem use. More important, the drivers are built into the
Linux kernel.

Before you purchase a specific card, make sure the drivers for the card exist
and your machine has the drivers compiled into the kernel. You might have to
create the ports your serial card uses with MAKEDEV. Our Cyclades card uses
ttyC0-ttyC15 for the serial ports instead of the standard ttyS0 and ttyS1 for the
standard serial ports. Fortunately, the Cyclades card came with a makecyc

install script that did the work for me.

Initializing Serial Ports

The program setserial needs to be called to initialize the serial port(s). The /etc/
rc.d/rc.serial file may need to be edited to properly set up your server's serial
ports. To use com2 for the dial-out modem, put the following line in rc.serial:

#standard serial port - com2:
setserial /dev/cua1 spd_vhi auto_irq autoconfig

For the Cyclades card, I configured the ports 3-10 /dev/cub2 - /dev/cub10 (some
unused—for expansion) as follows:

#configure Cyclades serial ports
setserial -b /dev/cub2 spd_vhi autoirq skip_test
setserial -b /dev/cub3 spd_vhi autoirq skip_test
setserial -b /dev/cub4 spd_vhi autoirq skip_test
setserial -b /dev/cub5 spd_vhi autoirq skip_test
setserial -b /dev/cub6 spd_vhi autoirq skip_test
setserial -b /dev/cub7 spd_vhi autoirq skip_test
setserial -b /dev/cub8 spd_vhi autoirq skip_test
setserial -b /dev/cub9 spd_vhi autoirq skip_test

Make sure the rc.serial file is called from one of the startup rc files, usually rc.s.
This will configure your serial ports automatically during boot.

Modifying the gettys File

Next, you need to configure the host to listen to the serial port for incoming
connections and to to answer these connections. The /etc/gettydefs file is used
to set up the gettys which make connections to the machine. When a standard
version of Linux is installed, you find these lines in the /etc/gettydefs file:

c1:1235:respawn:/sbin/agetty 38400 tty1 linux
c2:1235:respawn:/sbin/agetty 38400 tty2 linux
c3:1235:respawn:/sbin/agetty 38400 tty3 linux
c4:1235:respawn:/sbin/agetty 38400 tty4 linux
c5:1235:respawn:/sbin/agetty 38400 tty5 linux
c6:12345:respawn:/sbin/agetty 38400 tty6 linux

This provides your console (keyboard) with six virtual logins. The fourth item in
the line /sbin/agetty is the program polling the console for a login. The
following parameters describe the login speed, terminal number and terminal
emulation. You add the following lines for dial-up lines after the parameters
list.

Dial-up lines using /sbin/getty
(actually getty_ps)
s1:345:respawn:/sbin/getty ttyC2 115200 vt100
s2:345:respawn:/sbin/getty ttyC3 115200 vt100
s3:345:respawn:/sbin/getty ttyC4 115200 vt100

We use a different getty (getty_ps) for our dial-up lines because of trouble using
agetty on the serial port. We also also heard that getty_ps is more reliable. You
can also use mgetty for the dial-up lines, but getty_ps works great for us. The
parameters for getty_ps are slightly different, however: parameters following
the getty name are the tty, the /etc/gettydef label and the terminal emulation
default. The 115200 in the preceding lines refers to the label in /etc/gettydefs
file shown here:

#/etc/gettydefs
Modem locked at 115200: Serial port is at
115200, modem is much less, but should be
able to compress.
#
Last line of this file is described in next
comment line as fields separated by # signs.

label # initial-flags # final-flags # login prompt # next label
115200# B115200 CS8 CRTSCTS # B115200 SANE -ISTRIP CRTSCTS #@S login: #115200

Now you have to provide the getty_ps with the startup values. In the directory /
etc/defaults, place the configuration files for each dial-up line. For the dial-up
line /dev/ttyC2, we have a corresponding file called /etc/default/getty.ttyC2
shown in Listing 3.

If everything works as planned, the host should be able accept shell logins. You
should be able to dial into your machine and run commands in the shell.

To monitor the dial-up connection, you can set the DEBUG=777 in the /etc/
default/getty.tty?? file to create a log file. This will help you identify problems
should the modem not answer or not configure properly. The output is
dumped to the syslog file usually in /var/adm/syslog.

Dial-up Shell Access for Users

This confirmation, which provides people with shell dial-up access, can be
modified to provide dial-up PPP access to customers. We chose to modify the
default login program (in the poeigl package) because we wanted to provide
both PPP and shell access (useful when I'm remotely setting up someone's
machine). The ppplogin program has a prompt that looks like this:

Username: jsmith
Password:
Please select PPP or Shell access:
1) PPP
2) Shell
Please enter your choice: 1

If the user picks the shell, Linux invokes the standard defined shell for the user.
If PPP is selected, a script invokes pppd for the dial-up user and dynamically
allocates him an IP address. Part of the C code for invoking the ppp script file
looks like this:

/* --- PPP account login --- */
execlp ("/bin/sh", "-sh", "-c",
 "/etc/ppp/ppplogin", (char *)0);
fprintf (stderr,
 "login: couldn't exec shell script: %s.\n",
strerror (errno));
exit(0);

The /etc/ppp/ppplogin is shown in Listing 4.

When a user selects ppp, the server looks up the tty the person dialing in is
using and assigns the tty an IP address. If the user always calls in on a specific
line, he is given the same IP address. A user dialing in on the first line comes in
on ttyC6. This is used to assign an IP address of 206.156.217.31 to the user. This
creates a PPP link to the dial-up line like the PPP link to my host. The important

https://secure2.linuxjournal.com/ljarchive/LJ/041/2025l3.html
https://secure2.linuxjournal.com/ljarchive/LJ/041/2025l4.html

parameters related to this tty/ppp connection in the ppplogin script are as
follows:

• Detach—don't run as a background process.
• Modem—use the carrier lines to detect things like hanging up

• 206.156.217.10:206.156.217.35—I am known as 206.156.217.10, and the
person on the other end is known as 206.156.217.35.

Keeping the Connection Established

Early on we found our dedicated connection was frequently dropped by the
phone company. I solved this problem by using a program called pppupd which
constantly pings our ISP's machine and, if the ping fails, it invokes the ppp-on

script to redial the connection.

Fax Services and Seamless Windows 95 Dial-up

Most of our customers are Windows 95 users who did not like having to type
their name and password in each time they logged on to the server. To remove
this source of irritation, we found a different getty package called mgetty, which
provides autodetection of PPP dialers for Windows 95 users who want to use
the Dial-up Networking dialog box. This has saved us quite a bit of time
supporting Windows 95 users. The mgetty package (http://sunsite.unc.edu/
pub/Linux/system/Serial/mgetty+sendfax) is difficult to set up, so read the
documentation before building. One wonderful feature of this package is the
capability to receive faxes on the incoming modem lines without additional
hardware or additional lines. We can use the same dial-up lines to receive
faxes.

E-mail

E-mail for us was automatically configured with my Linux installation. You can
install pine for shell access and POP v3 for POP server e-mail. If you don't have
the POP server installed, you can get a package called pop3d from any of the
various sites, such as sunsite.unc.edu, and follow the instructions to install it.

Web Server

If you want your machine to host web pages, you have to install a web server.
We downloaded the Apache web server (http://www.apache.org/) and
recompiled and configured it using the available documentation. Compiling the
source should create an httpd executable which can be copied into /usr/sbin. In
addition, add the line /usr/sbin/httpd in the /etc/rc.d/rc.local configuration file
for it to be automatically started during boot up.

Eric Harlow has been running NetBrain on Linux since February 1996. He's
currently a consultant at RDA Consultants Ltd. His e-mail address is
brain@netbrain.com.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/041/toc041.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Speaking SQL

Reuven M. Lerner

Issue #41, September 1997

An introduction to building a database using SQL in Perl and CGI.

In my work, I often find myself writing CGI programs that need to read or write
information on the file system attached to a web server. Sometimes, this
information is fairly simple, throwaway stuff, such as logging information
accrued when I am trying to debug a particularly difficult program.

Sometimes, as we saw in a series of columns earlier this year, we can use text
files for the storage and retrieval of structured information, such as the
questions and answers for a multiple-choice quiz. Those quizzes were stored in
a simple format, with each question placed on a line by itself. For example, here
is a line that might have come from one of those quizzes:

What color was George Washington's white horse? White Black Gray Pink a

While the mechanics of magazine publishing mean that you cannot see the
difference between various whitespace characters, the above line is separated
into six fields: The question text, the four answers presented to the user, and a
letter (a, b, c or d) indicating which of the four answers is correct. Fields are
separated by Tab characters (ASCII 9), which look identical to space characters
(ASCII 32), but which are quite different as far as the computer is concerned.

The quiz programs we explored earlier this year expected to read from files
containing one or more such lines, with each line representing a single
question. A quiz containing a single question (for users who prefer easy
challenges) would have one line, while a quiz containing 1000 questions would
contain 1000 lines.

This raises the important issue of scalability, the software's ability to remain
efficient even when data sets become quite large. It is not difficult to write
programs that can handle small amounts of data efficiently, particularly as

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

hardware continues to drop in price while increasing in performance. It is much
harder, though, to write software that can handle large amounts of data.

ASCII text files are wonderful when dealing with small amounts of data, since
they are easy to manipulate from within programs, particularly when using Perl,
which is strong in handling regular expressions. But when we must work with a
large amount of data, or when we want to perform sophisticated searches, we
may find ourselves reinventing the wheel or working with tools (such as ASCII
text files) that no longer fit our needs.

Basic SQL

A common solution to this problem is to off-load the data storage and retrieval
to a program known as a relational database server. The “server” part of the
name indicates that it expects to receive requests from one or more clients,
and the “database” part of the name indicates its storage and retrieval of
information on behalf of those clients. You may, however, be unfamiliar with
the “relational” part of the name, which means that data is stored in sets of
tables, which we can access using SQL, the Structured Query Language. This
month, we take a first look at SQL queries, including how they can be integrated
into our CGI programs; in the coming months, we will explore this topic in
greater depth, using relational database servers for a variety of projects.

SQL is an international standard to which many corporate databases adhere.
While the “L” in SQL stands for “language”, it does not mean that you can write
programs in SQL. Rather, SQL is a language for formulating queries to database
servers. The SQL commands must be incorporated into programs written in a
true programming language, such as Perl or C.

Relational databases work on the client-server model, just as the Web does.
Whereas web clients and servers communicate using HTTP, database clients
and servers communicate with SQL. Needless to say, SQL is much more
complicated than HTTP, although as you will see, it is fairly straightforward to
learn. SQL may be easy to learn, but that does not mean it is simple. On the
contrary, long-time database administrators and programmers understand
more about the storage and retrieval of data using SQL than I could ever
imagine.

The key to understanding SQL is to realize that everything in an SQL database is
stored in a table. Rows in the table represent table records, while columns
represent fields. Thus, we could represent an address book as a table.

Name Telephone
---- ---------
Reuven 04-824-2265
Andy 02-123-4567
Gil 04-999-8888

There are three records in this table, each represented by a row. Each record
contains two fields, each represented by a column. Each table and column must
have a name, so we will call this the “phone_book” table, with two columns,
“name” and “telephone”.

So far, this might not seem like a great advance over what we have done with
text files. Why bother with rows, columns, and tables when we can use an ASCII
file?

The simple answer is that we can allow the database server to do the work for
us—and it will return an answer to us very quickly, as per our instructions,
without getting bogged down by the number of records in the database. If we
were interested in finding Andy's telephone number with a text file version of
the above table, we would need to iterate through the entire file, checking each
record for a match. With a relational database, we can issue an SQL query to
the database server, asking for only those rows which match our particular
criteria.

Thus, if we were interested in retrieving Andy's telephone number from the
table above, we could use an SQL select command to do so:

select telephone from phone_book where name =
 "Andy";

The SQL statement above asks the database server to return the telephone

column from the table named phone_book, for each row in which the name is
Andy. If a single row matches the query, we receive a single row as a response
from the database server, but if multiple rows match, we receive all of those
rows. If no row matches our query, we receive no rows, which might seem odd,
until you realize that database client programs often iterate over the results
returned to them. Iterating over no values is as easy as iterating over 100
values, although most good client programs check to make sure that at least
one row was returned.

We can insert a row into our table with the following:

insert into phone_book (name,telephone) values
 ("Iris","04-999-8888");

After performing the operation above, our table looks like:

Name Telephone---- ---------Reuven 04-824-2265Andy 02-123-4567Gil
04-999-8888Iris 04-999-8888

which we can see by retrieving everything, using an asterisk to mean “all
columns”:

select * from phone_book;

If we want to retrieve all of the rows belonging to people with the telephone
number 04-999-8888, we use this line:

select name from phone_book where telephone =
 "04-999-8888";

Note that we do not need to worry about two identical records, since relational
databases strictly require each record to be unique in some way. Two rows
might differ in only a single column, but that column is enough to make the
rows distinct.

One advantage, then, of using SQL and a relational database server is the
increased efficiency, both of our programs (which no longer need to read the
entire contents of a text file) and ourselves (since we no longer need to write
matching engines and define data formats). There are other advantages to
using SQL and relational databases too; most importantly, database servers
handle file locking in a sophisticated and efficient way, ensuring that data is not
lost while keeping operations moving along quickly.

Relational databases also offer an amazing array of optimization techniques
and security levels, among other things. And best of all, SQL is a portable
standard that (mostly) works in the same way on a great many database
systems; that is, once you learn how to write some basic SQL queries, you will
be able to store your data on just about any available platform.

Most of my SQL experience is with Sybase on Solaris systems, but for the
purposes of this article, I decided the time had come to install a relational
database server on my Linux machine (running Red Hat 4.0 with a number of
updated packages, including the 2.0.30 kernel). I decided to download MySQL, a
database server that looked small but powerful, and which came in RPM (Red
Hat Package Manager) format, allowing me to install it quickly. (Don't confuse
MySQL with mSQL, another relational database package available for Linux. For
information on how to obtain MySQL, see the sidebar accompanying this
article.)

Using SQL from Perl

MySQL comes with a client program named, oddly enough, mysql, which allows
us to enter SQL queries directly to the database server, which is presumably
running at all times. We enter the database with:

[1016] ~% mysql test
Welcome to the mysql monitor. Commands end with ; or \g.
Type 'help' for help.
mysql>

Just as file systems store files within subdirectories within directories, relational
databases store tables inside of databases inside of the overall structure. Thus,
when we enter MySQL, we need to specify the name of the database we would
like to use. In example above, we specified the test database, to which all users
have access without needing to go through the standard procedure of entering
a user name and password. While user names and passwords for relational
databases can be the same as those for the user's account on the system, they
do not need to be. Indeed, for the sake of system security, you should make
them distinct from your regular system passwords.

Generally speaking, it is also a good idea to create one or more databases
exclusively for CGI programs, in order to avoid giving programs complete
access to all databases on the system. The nature of CGI programming is such
that users might be able to read the user name and password from the
program's source code, thus giving them access to whatever tables are in a
given database. However, in the interest of time and space, I encourage you to
read the MySQL documentation, which describes how to set user permissions
for various databases on the system In the meantime, we will use the test

database, to which all users have access, for our examples

To create our telephone directory table, we type:

mysql> create table phone_book (name char(255),
 telephone char(255));

Whitespace is unimportant in SQL queries. In the above example, I pressed
enter between the end of the first line and the go statement on the second line.
As you might expect, the go command tells a database client to send the query
to the database server, where it is evaluated and executed. Alternatively, we
can use a semicolon at the end of our query, which will preclude the need for
go.

The server responds to our query by giving us some statistics:

Query OK, 0 rows affected (0.27 sec)

In other words, creating a table took .27 seconds and did not affect any existing
rows.

You can quit mysql by typing quit at the mysql> prompt.

The MySQL programmatic interface from Perl works in much the same way as
the command-line program, except that it uses Perl 5 objects. The basic idea is
straightforward; we create an instance of a MySQL object, and then use that
object to get through the process of logging in, sending queries, and
interpreting the results.

Listing 1 contains a functional program that can query our phone_book table
and return the results. More importantly, though, that program is the skeleton
for every program we write using MySQL. While the syntax might be slightly
different for Sybase and other databases, the general idea is the same—
connect to the database server, choose a database, send a query in SQL and
iterate through whatever results are returned.

First, we connect to the database server using Unix sockets, in part because
MySQL enables those sockets by default, which makes for an easier explanation
in a short column such as this one. You can, of course, also connect to a
database server running elsewhere on the network, just as a web browser can
connect to a web server across a network.

Once we are connected to the MySQL server, we use the query method to enter
our SQL query. Just as connecting to the database returns the database handle
$dbh, sending an SQL query returns the statement handle $sth. And just as we
need to use $dbh in order to send a statement, we need to use $sth in order to
retrieve results. In this particular statement, we have asked to see both of the
table's columns, as well as all of the rows in the table. However, we could
restrict our query with a where clause, as described earlier, which would return
a subset of the table's rows. We could also ask for a subset of the table's
columns, such that only the name or the telephone number would be returned.

Results are retrieved by iterating over the rows that were returned from the
server. If no rows match our query, the iteration is not performed; if 100 rows
match our query, it is performed 100 times. If we are interested in maximizing
the efficiency of our programs that handle SQL queries, it is in our interest to
construct queries that return only those rows that most interest us, since
iterating through a large number of rows can be quite inefficient and time-
consuming.

If I run the program in Listing 1 (named sql-test.pl on my system) from the
command line, I get:

[1031] ~/Text/LJ% ./sql-test.pl
Iris 04-999-8888
Reuven 04-824-2265
Andy 02-123-4567
Gil 04-999-8888

We can, of course, use the above skeleton program to insert rows, create tables
and do more complicated things, such as joining tables together (which is, to a
large degree, the magic behind SQL) and order results in ascending or
descending order. If we were to keep the area code in a different column from
the telephone number itself, we could refine our searches even further, asking
for all people within a given area code whose first name is Iris, for example.

https://secure2.linuxjournal.com/ljarchive/LJ/041/2421l1.html

Using MySQL from a CGI program

Now that we have seen some basic uses of MySQL from within Perl, let's spend
some time thinking about how we can integrate the use of MySQL into a CGI
program. While this might seem like overkill for some small jobs, database
servers are so much more reliable and efficient at this sort of task than our CGI
programs that it is almost always worth using such a server, assuming one is
available.

By using a database server, we can be sure that our data is stored more reliably
than with text files. As an added bonus, the information is available using SQL,
which is more efficient and flexible than text files.

How can we use a database server from within our CGI programs? The simple
answer is that it is actually no different from connecting to a database server
from within non-CGI programs. We still create the Mysql object, use its
methods to send an SQL query and retrieve results. The differences are in our
ability to modify our query based on input sent to us in an HTML form and the
necessity of sending our output to the user's browser using a recognized
content type (usually HTML). Such a program, which I have called cgi-sql-test.pl
is shown in Listing 2.

While cgi-sql-test.pl is longer than the program on which it is based, it is not
much more complicated.

First, we fire up the CGI module for Perl, which you can get via the
Comprehensive Perl Archive Network (CPAN) at http://www.perl.com/CPAN.
After creating an instance of CGI, we send an HTTP Content-type header to the
user's browser indicating that we will be returning results of type text/html, i.e.,
HTML-formatted text.

Following our initialization of the CGI environment, we go ahead with what we
had done in the non-CGI version of the program, namely connecting to the
database, sending our query and retrieving the results.

This is where the big difference lies. Rather than printing the results to
standard output, we send them in HTML format to the user's browser, so that
we can use all sorts of nifty HTML formatting techniques to display the results.

In this particular example, I decided to put the results of the telephone list in an
HTML table, which is attractive and makes it easy to understand the results. The
<tr> tag introduces a table row, while the <td> tag introduces a column within a
row. Because each iteration through the while loop represents a new record in
the database, we can start a new HTML row at the top of each loop, ending it at
the bottom of each loop.

https://secure2.linuxjournal.com/ljarchive/LJ/041/2421l2.html

We will continue to explore the interaction between SQL and CGI in the next
few installments, but before I conclude this month's column, I want to show at
least one example of how we can modify the SQL queries based on the user's
input. For the sake of simplicity, we modify our program such that it will ask the
database server to return only those rows whose name column matches what
we enter in the query string. Thus, if we are interested in finding out Gil's
telephone number, we can go to:

/cgi-bin/cgi-sql-test.pl?Gil

And if we are interested in finding out Andy's telephone number, we can go to:

/cgi-bin/cgi-sql-test.pl?Andy

which produces only that listing.

But what happens if someone invokes our program without entering a name in
the query string? Well, our program cleverly notices it and produces a very
small page of HTML in response. This small page of HTML asks the user to
enter a name for which to search and then uses the <isindex> tag to create a
text field in the page of HTML.

The <isindex> tag has generally fallen out of favor, since HTML forms are more
flexible and useful. When a user enters information into an <isindex> field and
presses enter, the URL in which the <isindex> tag appeared is reloaded—with
the user's input appended as part of the query string.

Thus, if our program receives no input in the query string, it produces a page
containing <isindex>. Whatever the user enters in that text field causes our
program to be reloaded, this time with a value in the query string. That value is
picked up by our program and passed to MySQL, which returns the results in
an HTML table.

That concludes the basic introduction regarding the integration of SQL and CGI
programs. As you might imagine, SQL databases are far more powerful than
the programs and databases we have seen this month. Over the next few
months, we will spend some more time looking at different ways in which we
can use MySQL (and relational database servers in general) to make for more
interesting, efficient and useful web sites.

Reuven M. Lerner is an Internet and Web consultant living in Haifa, Israel, who
has been using the Web since early 1993. In his spare time, he cooks, reads and
volunteers with educational projects in his community. You can reach him at
reuven@netvision.net.il.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/041/toc041.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Letters to the Editor

Various

Issue #41, September 1997

Readers sound off.

Misspelling

It's great to see two (count them) of our books reviewed in a single issue. [June,
1997] However, you spelled my name wrong in the “Programming with GNU
Software” article by Randyl Britten. I take that as a lapse on my part. I should be
in touch with you more often. (I tend to just drop by the booth at occasional
conferences.)

—Andy Oram O'Reilly & Associates, Inc .andyo@ora.com

Thanks for being so understanding. Unfortunately—a-hem—I have to take full
responsibility for the spelling. It's in my original manuscript and there was no
excuse. I offer my apologies.

—Randyl Britten britten@u.washington.edu

More Novice Articles

Thanks for your seamless renewal of my subscription, even though I had
decided in favour of the new UK Linux World magazine, which has now
disappeared after one issue.

LJ continues as well as ever, but I'd like to add my voice to the novice lobby—
more stuff for us please. After some easily understood articles on RCS, shell
scripting and the like, you've become all technical and clever again. I'd like to
see stuff on make and gdb—I've downloaded many applications as source
archives only to find the authors assume abilities I don't have. Stuff on the
startup and shutdown scripts would also be nice. Anyway, great magazine.

—Bob Smith bob@bank.demon.co.uk

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

For every opinion, there's an equal and opposite opinion. Read on —Editor

More Technical Articles

I would like to see Linux Journal remain a Linux magazine, and not move
towards more WWWsmith articles, as you have done in the last few months.

Also, I would like to see LJ become more technical, and move away from the
novice corner type stuff, which can easily be found in more current form in
places such as Linux Gazette, newsgroups, etc.

When I say technical, I mean articles like Alessandro Rubini's excellent Kernel
Korner columns. Or detailed articles on Perl and shell scripting, hardware ports
to alpha or networking (the article on ghosting in June is a nice detailed article).
[“Ghosting Onto the Net”, Scott Steadman, June 1997]

I understand that Linux is new in some sense, and you may feel justified in
having the “simpler” stuff in there, so I offer my feedback as simply another
data point for your consideration.

—Les Schaffer godzilla@futuris.net

We strive to be balanced, offering both a Kernel Korner and a Linux Apprentice
column each month —Editor

Keyboard Typos

I very much enjoyed your keyboard article in the June Linux Journal.
[“Consistent Keyboard Configuration”, John Bunch] The article as published by
LJ had several typos. I was able to get most everything to work as described.
Did not have much luck with the arrow keys in Emacs running in an xterm. I
have not been able to determine the cause of this. Something to do with the
xterm translations?

—W. Paul Mills wpmills@sound.net

Note that on page 54, six lines are broken, forcing “Arrow” onto the following
line. These lines should be joined so that “Arrow” is inside the comment. Also
note that the escape sequences are incorrect. The double backslashes should
all be single backslashes, so for example, the line for F117 should read:

string F117 = "\033\033[A" # Alt-Up Arrow

This type of error is present throughout the article. On page 57, the key
translation lines have two problems. First, all of the double backslashes should

be changed to single backslashes. Second, the lines were broken improperly.
The first seven lines are shown in Listing 1.

Listing 1. Keyboard Corrections

Copy the rest of the lines from the man page for xterm(1). Every line of the
translations, except for the last line, should end with either \n\ or \.
Typographical errors here are very serious, because they cause problems
without generating any error messages.

Let me know if this helps.

—John F. Bunch bunch@ro.com

Benchmark Table

I have a little big complaint about LJ Issue 37, in particular the native PowerPC
article [“Native Linux on the PowerPC”, Cort Dougan, May 1997]. There was a
performance listing which compared MKLinux, native Linux-PPC and OSF and
some Sun operating systems, but the table was typeset all wrong. Being so
cryptic it is almost, if not completely, useless since one cannot tell which digits
belong to which columns. If you have so many problems getting your magazine
printed correctly, you should probably hire better people, like me for instance.

—Ville Voutilainen vjv@stekt.oulu.fi

Think Linux

Hello. My name is Giacomo Maestranzi. I am from Italy and I am a frequent
reader of Linux Journal because I find it very interesting—especially the last
issue (June 1997) which covered Linux use in my region (TRENTINO ALTO ADIGE
and the city is BOLZANO). [“Traveling Linux”, Maurizio Cachia] What I just have
to say is that I love Linux and everything related to it, and I have created a
slogan for it that I would like to see in a future issue. The slogan is:

THINK FREE...... THINK BIG.......THINK LINUX

Thank you again for LJ. I apologize for my English, but this is my best.

—Giacomo Maestranzi hoteuropeo@well.it

https://secure2.linuxjournal.com/ljarchive/LJ/041/2434l1.html

Push Media

Kudos to Doc Searls for his insight into how the WWW has the “mainstream
media/advertisers” scrambling to remain a monopoly. [“Shoveling Push Media”,
June 1997]

I have been an active WWW user for about 2 years—started on AOL as a newbie
and graduated to a direct ISP. I am not interested in push technology. My
senses are offended often enough when I turn on the TV or radio. Push
technology will appeal only to the “couch potatoes” of the world who purchase
WebTVs to impress their technophobic friends. I say leave TV on the TV.

The beauty of the WWW is that I can control what I see. If I find a site
uninteresting, I leave. The other compelling aspect of using the Web is that I can
remove the classic “middle man” from my business transactions. When I want
to buy something using the Web, I go straight to the person(s) who offers it. I do
not have to be offended, goaded or otherwise angered by traditional
advertising. This fact scares technologically savvy advertisers. I would be scared
too, but that is the reason I write software for a living.

—Jeffery C. Cann jc_cann@ix.netcom.com

Perfect Box

Eric Raymond's article, “Building the Perfect Box” (April, 1997) was quite
instructive, but he did not mention one essential component—the keyboard. In
my experience, this is one place you should not skimp. A bad keyboard is
frustrating to use and may contribute to carpal tunnel syndrome. I like the top-
of-the-line IBM keyboards, but you should always try one out before you buy it.
When you experiment, you should sit in the same position you use when
typing.

By the way, if there is anyone out there who does not have Raymond's book,
The New Hacker's Dictionary, go out and buy it right now.

—James R. Miller jimxc@jimxc.seanet.com

Wireless Solution

I read the “Linux Means Business” column with interest this month [“Connecting
SSC via Wireless Modem”, Liem Bahneman, May 1997], as I have recently
switched from an analog modem to a wireless solution for net access to the
office from home. I recommend Metricom's Ricochet service (http://
www.ricochet.net/) very highly. I consistently receive transfer rates of 2.5 to
3.5KB/s, and it is child's play to use it under Linux; it supports the standard

Hayes AT command set. I've never received a busy signal and establishing a
connection is lightning fast compared to an analog modem's handshake.

—Nick Silberstein nick@fusion.com

Wabi Article

I was surprised to see in the Wabi product review by Dwight Johnson (LJ, June
1997) a suggestion to chmod<\!s>666 /dev/fd0. Giving random users
permission to write to your floppy drive is not exactly a good thing to do.

Also, near the end of the article, it was mentioned that one should wait for
Wabi 3.0 to drive 24-bit displays. Last time I checked, Caldera's Wabi 2.4c (not
yet released) should fix the 24-bit display problem.

As for the “seamless integration of Microsoft Windows with Linux,” I personally
find Wabi's handling of the focus most annoying. For Windows tasks that take
time to complete, you can easily create havoc by focusing on a Linux window to
do something, just to be interrupted in the middle by a “regain of focus” by a
Wabi task. For machines with a lot of memory (and therefore the ability to run
two X servers), I find running Wabi on a separate X server to be the safest.

(The article also did not cover keyboard remapping; the information on
keyboard remapping found on Caldera's web site is not exactly helpful.)

—Ambrose Liac li@acli%interlog.com

Security and Networking

I just received your recent issue of Linux Journal, and it was very helpful and
informative. [“The SYN Denial of Service”, Douglas Stewart, et al., June 1997] I do
have some problems with the SYN denial of service prevention. The source was
published in Phrack magazine, and also includes the methods of prevention
(which were the same as you had discussed in LJ). Unfortunately, TCP SYN
flooding is only one of many attacks; there is also Project Hades which deals
with TCP exploitation, and Project Loki which presents the theory of
ICMP_ECHO tunneling. These are just the articles I have read. If you want to
stay ahead in the security field, read these articles as they also contain methods
of prevention. Phrack can be found at http://www.fc.net/phrack. I hope this is
of some help.

—Tom McHannes pnmtofte@imperium.net

Progress on Linux

Just read with interest your 1996 article about your company's use of Progress
on Linux. [“Sticking with Progress”, Peter Struijk and Lydia Kinata, September
1996]

As an international non-profit organization, we have used SCO Unix for 8 years
and have been very pleased with it, except for the growing resources needed to
run it, as well as the cost to buy and upgrade it.

At our international meetings in London last month, we decided to do some
testing with Linux to see if it works in our environment and if it could be used
as a replacement for our office networking systems. Our German office has
been running nicely on Linux for several months, but has yet to get the
Progress kit for testing.

1. Did you have a shared library from SCO or did you have to buy the license
to make running Progress legal?

2. Are you running Progress 7 or 8 now?

We are looking at linking Progress with “static binding” to eliminate the need for
the shared libraries, since we have the full development kit.

Progress says it will probably never support Linux directly since there is no
standards body to refer to as there is with its commercial counterparts.

—Ron Tenny ron@omusa.om.org

We actually use the free libraries distributed with iBCS: that is, they are
available in a separate archive. The only two we need are libc_s and libnsl_s. I
believe we still have an (old) SCO license, but we never had a need to use the
original libs (although they work fine, too).

We are still running V6, but I've heard reports from the east coast and Canada
that V7 and V8 can be run on Linux without (major) problems.

To join our mailing list for Linux Progress users, send e-mail to
info@linuxjournal.com with one line in the body containing the word “info”.

—Peter Struijk info@linuxjournal.com

Archive Index Issue Table of Contents

 Advanced search

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/041/toc041.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

 Advanced search

Education

Marjorie Richardson

Issue #41, September 1997

The most reliable and cost- effective way for a school to get on the Internet is to
use the Linux operating system with the Apache web server.

Our focus this month is on Education, a subject dear to the hearts of many
Americans. Since coming into office, President Clinton has been promising to
get all U.S. schools on the Internet, and Congress has appropriated money to
help the public schools “get wired”.

The most reliable and cost- effective way for a school to get on the Internet is to
use the Linux operating system with the Apache web server. Currently, Apache
is used more than any other available server—it just doesn't get the same
publicity commercial servers do because it is freely available. That is, no one
benefits financially from advertising it.

Our feature article, “Holt Public Schools and Linux”, is about a school system
that has done this very thing—networked their computers using Linux and
provided students with access to the Internet. Linux has proved the right
solution for their school system, and it is the right solution for others, too.

Universities have been proving the reliability and effectiveness of Linux for
some time now. For this issue we received five articles from universities, but
had room for only three. The other two will be published in future issues.

As all of these articles show, Linux works for students in the classroom and the
lab, as well as at home and in space. Students at the University of Colorado
used Linux for the hydroponics experiment aboard the space shuttle [“Linux
Out of the Real World”, Sebastian Kuzminsky, Linux Journal, July 1997]. This
month, we have students at that same university using Linux for robotic car
races.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

Fall Comdex

As I write, Spring Comdex is being held in Atlanta, Georgia, and Fall Comdex is
being planned. Comdex Fall '97 will be held in Las Vegas, Nevada, from
November 17 through 21. Details can be found on their web site at http://
www.comdex.com/. Comdex Fall is the largest industry trade show in North
America, with over 2,000 exhibitors and over 200,000 attendees. This year the
Linux Pavilion will be larger than ever with many prominent Linux vendors
participating. Linux Journal will definitely be there to meet you.

The exhibit halls at Comdex are free to pre-registered attendees. A form for
pre-registration can be found at their web site. If you wish to get involved with
organization or to set up an exhibition booth for yourself in the Linux Pavilion,
send e-mail to info@linuxjournal.com.

Reader's Choice

We are now taking votes for our annual Reader's Choice awards at the Linux
Journal web site, http://www.ssc.com/lj/. There are more categories this year, so
don't miss your chance to vote for your favorite products. Voting ends August
22, 1997.

Buyer's Guide

Our first annual Linux Journal Buyer's Guide, which came out in February of this
year, has been declared a success, so we are doing it again. This second issue
will again be published as a free thirteenth issue for our subscribers. So,
subscribe now by e-mailing info@linuxjournal.com.

Product and service listings come from forms that we distribute, as well from
the Linux Software Map. If you have not received a form, it can be found on our
web site at http://www.ssc.com/lj/bg/. There is no charge to have your product,
service or business listed in this issue.

Linux Speaker's Bureau

We have added a new page to our Linux Resources web site, http://
www.ssc.com/linux/lsb/. On this page you can find a list of people willing to
present talks about Linux. The page gives you some information about these
speakers, including talks they've given and talks they'd like to give. When you
need a speaker for your club or trade show, all the information is right here. If
you like to talk about Linux, there is form for you to fill out that will add your
name to the growing list of speakers.

GLUE Announcement

Caldera has announced that it will give a free copy of OpenLinux Lite on CD-
ROM for each newly registered group of GLUE. Caldera, Inc. (http://
www.caldera.com/) is located in Provo, Utah. For full details on GLUE and to
register your group as a member, visit the GLUE web site at http://
www.ssc.com/glue/.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/041/toc041.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Atlanta Linux Showcase Report

Phil Hughes

Todd M. Shrider

Issue #41, September 1997

ALS was a success—everyone had fun and went home happy. Here's a report
from Phil, and following it is one from an ALS attendee, Todd Shrider.

The Atlanta Linux Showcase (http://www.ale.org.showcase/) is over, and
everyone is beginning to recover. Recover, that is, from being awake too long,
being on a plane too long and stuffing more Linux than will fit into one
weekend.

ALS was put together by the Atlanta Linux Enthusiasts, the local Linux users
group in Atlanta, Georgia. The show began in the evening on Friday, June 6 and
ran through Sunday afternoon. More than 500 people attended. The report
following this one by Todd Shrider covers much of the show, including the talks.

I want to thank Amy Ayers and Karen Bushaw for making their photos available
to us, with a special thank you to Amy for getting them scanned and uploaded
to the SSC ftp site. (Additional photos are available on the Linux Journal web
site in the July issue of Linux Gazette, http://www.ssc.com/lg/.)

I spent most of my time in the Linux Journal booth giving away magazines and
talking to show attendees. One aspect that made this show special for me is the
lack of time I spent explaining to attendees that Linux is a Unix-like operating
system. Instead, I got to discuss Linux with experienced people with thoughtful
questions, letting them know in the process how LJ could help them. Each
attendee was truly interested in Linux and stopped at each booth in the show. I
expect attendees appreciated the low signal-to-noise ratio in the booths; that is,
conversations were solely about Linux.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

The Roast

On Saturday night there was a roast. No, I didn't change from a vegetarian into
a meat eater overnight—we were “roasting” Linus. That is, a group of people
presented interesting stories about Linus, intended to only slightly embarrass
him.

In front of about 115 people, Eric Raymond, David Miller, Jon “maddog” Hall and
I got to pick on this Linus character. Topics varied from Linus almost being hit
by a car in Boston, because he was so engrossed in talking about a particular
aspect of kernel code, to the evolution of the top-half/bottom-half concept in
interrupt handlers and why Linus was apparently moving from geekdom to
becoming a “hunk” sportswear model. (See the cover of the San Jose Metro,
May 8-14, 1997.)

Maddog finished the roasting by telling a few Helsinki stories and showing a
video that included Tove's parents talking about Linus. A good time was had by
the roasters and the audience, and as Linus's closing comment was “I love you
all,” we assume he had a good time, too, and wasn't offended by our gentle
ribbing.

The Future

The show came off very well. I consider this success an amazing feat for an all-
volunteer effort. The ALE members plan to write an article for Linux Gazette
about how they made this happen. We'll also make this information available
on the GLUE web site (http://www.ssc.com/glue/). I would like to see more
shows put on by user groups. The local involvement, the enthusiasm of the
attendees and the all-Linux flavor of the show made this weekend a great
experience. We are already thinking about a Seattle or Portland show, and we
would like to help others make regional shows a reality.

More on ALS

by Todd M. Shrider

I first started writing this article in my hotel room late Sunday evening (or early
Monday morning) planning to get just enough sleep that I would wake up in
time to catch my plane. The plan didn't work—I missed my 6:00 AM flight out of
Atlanta. I did the second draft while waiting for my new 9:45 AM flight. The third
draft came (yes, you guessed it) while waiting for my 1:30 PM connection from
Detroit to Dayton, also having missed the previous connection because of my
first flight's late arrival. Suffice it to say, I'm now back home in Indiana and still
enjoying the high I got from the Atlanta Linux Showcase.

Thanks to all the sponsors and to our host, Atlanta Linux Enthusiasts, the
conference started with a bang and went off without a hitch. The conference
was a three-day event, starting with registration on Friday and ending on
Sunday with a kernel-hacking session led by none other than Linus himself. In
between, there were numerous conferences found in both business and
technical tracks, several “birds of a feather” (BoF) sessions and a floor show.
These events were broken up with frequent trips to local pubs and very little
sleep.

This was my first Linux conference, and I found that an added benefit of ALS
was meeting all the people who use Linux as a business platform and tool.
(These same people tend to be doing very cool things with Linux on the side.)
From companies such as Red Hat, Caldera, MessageNet, Cyclades, DCG
Computers and others, it was obvious that many people have very creative
ways to make money with Linux. This enterprising wasn't limited, by any
means, to the vendors. Many of the conference speakers spoke of ways to
make money with Linux or of their experiences with Linux in a professional
environment.

All of these efforts seemed to compliment the key-note address, “World
Domination 101”, where Linus Torvalds called for applications, applications,
applications. (Did I say he thought Linux needed a few more useful
applications?) Anyway, he pointed out the more or less obvious fact that if Linux
is going to be a success in a world of commercial operating systems, it needs
every application type available for commercial operating systems. In other
words, if you're thinking about writing application software for Linux, don't
think—just do it. Another thing pointed out by Linux, and which I was glad to
hear echoed throughout the conference, is the need for Linux to be easy to use.
It needs to be so easy that a secretary or corporate executive could use it as
productively as they would Windows 95. We need to make people realize that
Linux has eliminated the high learning curve usually associated with Unix.

Don Rosenberg, while speaking on the “how-to” and “what's needed next” of
commercial Linux, said that we are now in a stage where the innovators (that's
us) and the early adopters (that's us, as well as the people using Linux in the
business world today) must continue to push forward so that we can get
another group of early adopters (the old DOS users) to take us seriously. In
Maddog's closing remarks, he urged us all to find two DOS users, convert them
to Linux, and then tell them to do the same. Today, as a step in this direction, I
introduced a local corporate computer sales firm to Linux; whether they take
my advice remains to be seen, but believe me, I'm pushing.

The rest of the conference was filled with business and technical talks. The
business track included such talks as Eric Raymond's “The Cathedral and the

Bazaar”, talks on OpenLinux by both Jeff Farnsworth and Steve Webb, and
“Linux Connectivity for Humans” by none other than Phil Hughes. Lloyd Brodsky
was on hand to speak about “Intranet Support of Collaborative Planning”, while
Lester Hightower brought us the story of PCC and their efforts to bring Linux to
the business world. Mark Bolzern spoke of the significance of Linux, and Bob
Young talked of the “process”--not the “product”--of Linux.

The technical track started with Richard Henderson's discussion of the shared
libraries and their function across several architectures. Michael Maher gave a
how-to of Red Hat's RPM package management system, and Jim Paradis
discussed EM86 and what remains to be done so that one can run Intel/Linux
binaries under Alpha/Linux. David Miller then followed, giving a boost of
enthusiasm with his discussion of the tasks involved in porting Linux to SPARC,
and Miguel de Icaza took us on a trip to the world of RAID and Linux. We
convened the next day to hear David Mandelstam discuss issues involved with
wide-area networks, and to hear Mike Warfield's anatomy of a cracker's
intrusion.

All in all, the conference was a huge success. As an improvement for next year, I
might suggest more involvement from the vendors (or maybe just more
vendors), discounted prices for conference attendees from the vendors on their
special Linux wares and a possible tutorial session, like those seen at UseLinux
(Anaheim, California, January 1997). Otherwise, a few virtual beers (I owe you,
Maddog) and lots of great geek conversation made for one wild weekend.

Phil Hughes is the publisher of Linux Journal.

Todd M. Shrider (todds@ontko.com)

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

mailto:todds@ontko.com
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/041/toc041.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Linux Grows Up

Phil Hughes

Issue #41, September 1997

Linux is being recognized as a serious OS with real commercial potential.

Each month we allocate a page for this column. The space is reserved past the
regular deadline to give us an extra week to find the right earth-shattering
event to report—which sometimes doesn't happen. This month we missed the
initial deadline and were left with about a day to find some earth-shattering
news and write the column.

Back in the early days of Linux there was a new kernel almost every day, which
produced a continuous stream of new topics. Linux has grown up—it's too
stable, reliable and routine.

Or is it? I went to the comp.os.linux.announce newsgroup hoping to find an
exciting event. I didn't. I read it again. Still no exciting event. Then, I realized I
was so busy looking for one thing that I had missed an event of more
significance than any single post.

Linux is being recognized as a serious OS with real commercial potential. It's
not that we haven't had anything commercial posted before, it is that there
were so many posted in the last week and the type of information posted. Here
is a sample:

• Process credit cards on your computer: Credit Card Verification System
(CCVS) from HKS, Inc. is a package that gives you a command line interface
and GUI to do credit card processing as well as libraries to call from
programs.

• WebMagick Image Web Generator 1.29: WebMagick is a package which
makes putting images on the Web as easy as magic. Or, more specifically,
WebMagick builds HTML pages and image maps from a set of image files.
Thus, rather than manually building a page using thumbnails and writing
HTML so the thumbnails are clickable, WebMagick builds maps consisting

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

of the thumbnails and writes the HTML. Besides saving you time,
WebMagick improves performance by decreasing the number of
individual files that make up a clickable page.

• Linux nominated for a European Software Excellence Award: These
awards are sponsored by Ziff-Davis, Europe's largest computer magazine
publisher. The three finalists for the Desktop Environment Award were
Microsoft, IBM and Red Hat Software. They said: “... Linux has grown up
from being a programming freak's playground to a stable and easy to
install operating system. ...”

• Web-based application development platform: TalentSoft Web+ 3.0 is a
premier web-based application development platform for Unix and
Windows. The article states “Web+ is extremely scalable, having been
tested successfully on a web site with an average of 2,000,000 hits/day,
40% of which are hits to the Web+ server.” Now, the posting didn't say it
was a Linux box that handled the 2,000,000 hits per day, but the product
is available for Linux—the limitation is the hardware, not the software.

• VBVM—A Visual Basic 5 Virtual Machine: This product from Softworks
Limited is a portable version of the MS Visual Basic 5 virtual machine. It
enables you to take VB5 executables and run them, unmodified, on other
platforms. While not an application, it will make it possible for lots of
existing applications to run on Linux.

• Rent-a-dedicated-server for $250: Vipex Internet Presence rents Linux
servers including DNS and an unlimited number of domains for $250/
month.

• Qbib-1.1 bibliography management system: Herrin Software
Development, Inc. had built a bibliography management system based on
qddb. It features all sorts of import and export options plus searching and
report generation.

• Motif Interface Builder VDX 1.1: VDX from Bredex GmbH is a GUI-based
interactive tool that generates C and C++ source code.

• Regulus 1.1: Regulus is a package to manage customer accounts for ISPs
and includes customer activity logs and a web interface to access those
logs.

This is enough of a sample of what's out there to give you the idea. Being an old
Unix hacker, I see this influx of postings as the tool box getting filled with new,
fancy tools. For example, using Regulus and CCVS, you can quickly put together
an ISP with automated credit-card billing. Use Web+, WebMagick and a Vipex
server to build a web site.

Tie all of this together with a post about an article on Linux in the June 1997
issue of Business Computer World that concludes that “Linux is very solid,

widely used, and a real potential threat to Microsoft.” It also states “Linux is
behind in the availability of applications, but is catching up.”

Maybe some day STP will cover NT being replaced with Linux.

Phil Hughes is the publisher of Linux Journal and can be reached via e-mail at
info@linuxjournal.com.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/041/toc041.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Introduction to Named Pipes

Andy Vaught

Issue #41, September 1997

A very useful Linux feature is named pipes which enable different processes to
communicate.

One of the fundamental features that makes Linux and other Unices useful is
the “pipe”. Pipes allow separate processes to communicate without having
been designed explicitly to work together. This allows tools quite narrow in
their function to be combined in complex ways.

A simple example of using a pipe is the command:

ls | grep x

When bash examines the command line, it finds the vertical bar character |
that separates the two commands. Bash and other shells run both commands,
connecting the output of the first to the input of the second. The ls program
produces a list of files in the current directory, while the grep program reads
the output of ls and prints only those lines containing the letter x.

The above, familiar to most Unix users, is an example of an “unnamed pipe”.
The pipe exists only inside the kernel and cannot be accessed by processes that
created it, in this case, the bash shell. For those who don't already know, a
parent process is the first process started by a program that in turn creates
separate child processes that execute the program.

The other sort of pipe is a “named” pipe, which is sometimes called a FIFO. FIFO
stands for “First In, First Out” and refers to the property that the order of bytes
going in is the same coming out. The “name” of a named pipe is actually a file
name within the file system. Pipes are shown by ls as any other file with a
couple of differences:

% ls -l fifo1
prw-r--r-- 1 andy users 0 Jan 22 23:11 fifo1|

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

The p in the leftmost column indicates that fifo1 is a pipe. The rest of the
permission bits control who can read or write to the pipe just like a regular file.
On systems with a modern ls, the | character at the end of the file name is
another clue, and on Linux systems with the color option enabled, fifo| is
printed in red by default.

On older Linux systems, named pipes are created by the mknod program,
usually located in the /etc directory. On more modern systems, mkfifo is a
standard utility. The mkfifo program takes one or more file names as
arguments for this task and creates pipes with those names. For example, to
create a named pipe with the name pipe1 give the command:

mkfifo pipe

The simplest way to show how named pipes work is with an example. Suppose
we've created pipe as shown above. In one virtual console1, type:

ls -l > pipe1

and in another type:
cat < pipe

Voila! The output of the command run on the first console shows up on the
second console. Note that the order in which you run the commands doesn't
matter.

If you haven't used virtual consoles before, see the article “Keyboards, Consoles
and VT Cruising” by John M. Fisk in the November 1996 Linux Journal.

If you watch closely, you'll notice that the first command you run appears to
hang. This happens because the other end of the pipe is not yet connected, and
so the kernel suspends the first process until the second process opens the
pipe. In Unix jargon, the process is said to be “blocked”, since it is waiting for
something to happen.

One very useful application of named pipes is to allow totally unrelated
programs to communicate with each other. For example, a program that
services requests of some sort (print files, access a database) could open the
pipe for reading. Then, another process could make a request by opening the
pipe and writing a command. That is, the “server” can perform a task on behalf
of the “client”. Blocking can also happen if the client isn't writing, or the server
isn't reading.

Pipe Madness

Create two named pipes, pipe1 and pipe2. Run the commands:

echo -n x | cat - pipe1 > pipe2 &
cat <pipe2 > pipe1

On screen, it will not appear that anything is happening, but if you run top (a
command similar to ps for showing process status), you'll see that both cat

programs are running like crazy copying the letter x back and forth in an
endless loop.

After you press ctrl-C to get out of the loop, you may receive the message “
broken pipe”. This error occurs when a process writing to a pipe when the
process reading the pipe closes its end. Since the reader is gone, the data has
no place to go. Normally, the writer will finish writing its data and close the
pipe. At this point, the reader sees the EOF (end of file) and executes the
request.

Whether or not the “broken pipe” message is issued depends on events at the
exact instant the ctrl-C is pressed. If the second cat has just read the x, pressing
ctrl-C stops the second cat, pipe1 is closed and the first cat stops quietly, i.e.,
without a message. On the other hand, if the second cat is waiting for the first
to write the x, ctrl-C causes pipe2 to close before the first cat can write to it, and
the error message is issued. This sort of random behavior is known as a “race
condition”.

Command Substitution

Bash uses named pipes in a really neat way. Recall that when you enclose a
command in parenthesis, the command is actually run in a “subshell”; that is,
the shell clones itself and the clone interprets the command(s) within the
parenthesis. Since the outer shell is running only a single “command”, the
output of a complete set of commands can be redirected as a unit. For
example, the command:

(ls -l; ls -l) >ls.out

writes two copies of the current directory listing to the file ls.out.

Command substitution occurs when you put a < or > in front of the left
parenthesis. For instance, typing the command:

cat <(ls -l)

results in the command ls -l executing in a subshell as usual, but redirects the
output to a temporary named pipe, which bash creates, names and later
deletes. Therefore, cat has a valid file name to read from, and we see the
output of ls -l, taking one more step than usual to do so. Similarly, giving

>(commands) results in Bash naming a temporary pipe, which the commands
inside the parenthesis read for input.

If you want to see whether two directories contain the same file names, run the
single command:

cmp <(ls /dir1) <(ls /dir2)

The compare program cmp will see the names of two files which it will read and
compare.

Command substitution also makes the tee command (used to view and save
the output of a command) much more useful in that you can cause a single
stream of input to be read by multiple readers without resorting to temporary
files—bash does all the work for you. The command:

ls | tee >(grep foo | wc >foo.count) \
 >(grep bar | wc >bar.count) \
 | grep baz | wc >baz.count

counts the number of occurrences of foo, bar and baz in the output of ls and
writes this information to three separate files. Command substitutions can
even be nested:

cat <(cat <(cat <(ls -l))))

works as a very roundabout way to list the current directory.

As you can see, while the unnamed pipes allow simple commands to be strung
together, named pipes, with a little help from bash, allow whole trees of pipes
to be created. The possibilities are limited only by your imagination.

Andy Vaught is currently a PhD candidate in computational physics at Arizona
State University and has been running Linux since 1.1. He enjoys flying with the
Civil Air Patrol as well as skiing. He can be reached at andy@maxwell.la.asu.edu.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/041/toc041.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Linux for Embedded Systems

Sandor Markon

Kenji Sasaki

Issue #41, September 1997

A company in Japan is using Linux for embedded systems in vertical
transportation equipment such as elevators.

Fujitec is a global manufacturer and provider of a complete range of elevators,
escalators and other vertical transportation equipment. Nearly all of our
products use embedded computers in one form or other. To see the
implications, a few features of the elevator business to note are:

• The lifetime of the product is very long, on the order of 20 years or more.
• Safety and availability of elevator service is a deciding factor for the users,

especially for medium to high-rise buildings.
• Continuous service and maintenance during the full life cycle is vital;

usually, it is even required by law.
• To meet the requirements of long term, disruption-free service and

maintainability for embedded computers, we have recently started to
investigate the possibility of using the freely available Linux OS and the
GNU utilities.

The Target: Elevator Monitoring Equipment

We have in the past shipped several products using Linux. We will describe
here only one of them—a monitoring display for group controllers (see Figure
1).

Figure 1. Controller Monitoring Display

Another application, a user-interface system for editing scrolling messages in
elevator cars, is shown in Figure 2, but we do not have space to introduce it in
detail. (Notice the Japanese characters—Linux works fine in Japan, too.)

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1
https://secure2.linuxjournal.com/ljarchive/LJ/041/0133f1.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/041/0133f1.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/041/0133f1.jpg

Figure 2. Elevator User Interface

To put things into perspective, we need a few facts about elevators. If a building
has more than 2 or 3 elevators, they are usually working in groups sharing the
passenger traffic. A group of elevators is connected to a “Supervisory Group
Controller”, which shares the service of each elevator among users while
attempting to give each user the illusion that he/she has a personal elevator.

The modern elevator group controller is rather sophisticated; it has to run
difficult, optimal-scheduling algorithms in real time. The latest Fujitec models
use neural networks for on-line learning and optimization. Without proper
tools, the support personnel who perform installation and testing tasks
wouldn't understand what is happening with the elevator group.

For maintenance checks, upgrades and occasional troubleshooting, the GSP
(Group Supervisory Panel) has a graphical display showing the status of the
elevators. This monitoring display was the target of our first Linux application.

Figure 1 shows the graphic screen of the monitor display. Information for each
elevator, such as the present floor, traveling direction, door status, registered
calls, etc. is indicated by graphic symbols. This screen design has evolved over
several years, and it is now familiar to our technical and maintenance
personnel.

We built most of the original monitoring display system with custom-designed
components:

• A custom graphic board with custom graphics software
• Control software common with our sequence-controller, CPU board
• Serial interface with our proprietary protocol to communicate with the

group controller
• A multiscan VGA display (the only commercial part)

These components were chosen to give us the following advantages:

• Stand-alone operation in the elevator, machine-room environment
• Real-time response
• Long-term supply and maintenance
• Low cost

Even though we saw several problems with our custom-designed approach and
wanted to move to an established, popular platform, until recently it was not
feasible.

https://secure2.linuxjournal.com/ljarchive/LJ/041/0133f2.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/041/0133f2.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/041/0133f2.jpg

For the hardware, our first choice would have been the IBM- compatible PC,
perhaps in the form of PC/104 cards. However, the dominant commercial OS
(first DOS, then Windows), was unsuitable for many reasons. It is neither real-
time capable nor reliable, and there is no chance that a particular release could
have long-term support from its vendors.

Although there were many alternatives, such as the excellent Lynx OS, none of
them satisfied all of our requirements, especially the long-term stability and
availability criteria.

With the appearance of Linux, all this has changed.

Advantages and Problems of Using Linux for Embedded Systems

Over the past few years, several engineers at Fujitec became familiar with
Linux. Although we started it as a hobby, gradually the wider applicability of
Linux became clear to us.

Our motivation for embracing Linux for product development has several
roots:

• The availability of the complete source tree of the system, without any
restrictions on use, distribution or revisions, is vitally important to us. It
can ensure that we will have some way of maintaining our systems at a
site 5, 10, 15, ... years from now. If we wanted to guarantee the same with
a commercial system, it could easily become a nightmare. We could
imagine the vendor in 2010 (if still in business) just staring at us with
mouth agape, when we ask them about bug fixes for their 1997 system.
However, when we have the source, maintenance becomes “difficult”
instead of “impossible”, just as with in-house, custom-made systems.

• An added bonus is the freedom from administration of a royalty-based,
license system for some proprietary OS; not to mention the savings on the
license fee.

• We have been using Unix for system development for many years. After
some rather frustrating experiences with other systems on the PC
platform, our developers were quite eager to get back to a Unix-like
environment.

• Even among Unix systems, Linux feels unique: it is light, fast, runs on
almost any platform, contains the latest version of all free software and is
now so visible that even non-computer people are starting to talk about it.
It is a good feeling to be back in the mainstream again.

However, not everything is rosy. Since Linux is essentially Unix, a few things had
to be fixed before we could deploy it in an embedded controller.

• Ideally, we would like to use a ROM-based system, such as the one
described in the article “Booting Linux from EPROM” by D. Bennett, Linux
Journal, January, 1997. In our case, however, we needed X11, Tcl/Tk,
libraries, fonts, etc., so we were forced to use a hard disk-based system.
This means that we have to think about disk-buffer flushing, cleanup and
recovery after messy shutdowns, etc.

• Linux is not a “hard” real-time system as it stands, although people are
already working on real-time patches. (See “Introducing Real-Time Linux”,
M. Barabanov and V. Yodaiken, Linux Journal, February 1997.) For our
current application, this was not directly a problem, but we would need
guaranteed response time if we wanted Linux to control an elevator car.

• Installation must be made foolproof, especially for re-installation or
upgrades. We have found that our customized procedure works, but it still
needs to be improved.

The Linux Monitoring System

Figure 3. Monitoring System Block Diagram

Figure 3 shows the top-level block diagram of the monitoring system. We are
using the Slackware 3.0 distribution with XFree86 for graphics. The application
programs are compiled with the GNU C compiler (version 2.7.2). In some parts
of a different application, we also use Tcl/Tk for our graphical user interface
(GUI).

Many parts of the software, especially the X11 graphics, were ported without
any problems from our existing Unix applications (under SunOS 4.1). A large
part of our labor was spent on file system issues, in order to make the system
installable and robust.

File System, Installation, Recovery

Our design is based on the UMSDOS file system, which resides over an MS-
DOS-compatible host file system, e.g., Microsoft Windows. The decision to use
UMSDOS took into account the reality of the proliferation of pre-installed
Windows systems. Although Windows will not normally be used after Linux is
up and running, we prefer not to remove it completely or to give Linux its own
disk partitions.

With UMSDOS, the whole Linux system looks like a single MS- DOS directory
tree from the Windows side. This fact gives us the option of doing installation
and some restricted file maintenance from Windows, using CD-ROM or

https://secure2.linuxjournal.com/ljarchive/LJ/041/0133f3.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/041/0133f3.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/041/0133f3.jpg

floppies. However, we have found it faster and easier to boot Linux from floppy
and stream the system to the hard disk through an Ethernet link. Network
installation worked flawlessly both for desktop PCs, using a D-Link pocket
adapter DL620, and for notebook PCs, using a Megahertz (US Robotics) PCMCIA
network card.

The code we used to make the installation floppies, one each for the server
(host) and the client (target) machines, is available by anonymous ftp at ftp://
ftp.linuxjournal.com/pub/lj/listings/issue41/0133.tgz. Installation is almost
completely automatic by starting the two networked PCs from floppy and
answering a couple of questions about the X11 driver, display size etc. Because
we have these floppies, the Linux file system with our applications can be
“cloned” again and again from one Windows PC to the next.

Apart from installation, a major problem for our system is the crash recovery of
the hard disk. Since we cannot guarantee orderly shutdowns, we have to deal
with the cleanup after a “power failure”--like shutdown. We use the following
techniques:

• Writing to the disk is restricted; most parts are made read only, and there
is no swap file.

• At startup, the rc.local script runs the umssync program on the writable
directories to repair possible inconsistencies.

• Possible garbage from a previous run is removed automatically.
• For emergency re-installation, a second clean copy of the full Linux system

is maintained on the hard disk, and it is used to manually replace a
damaged system.

In the future, we will use a RAM disk for the temporary files, and we hope to
eventually fit the system into EPROMs.

Performance and Further Developments

We have installed the system both on notebook machines and on desktop
computers. In case of the notebooks, the DSTN color display had a relatively
narrow viewing angle, but it was usable.

The system was built into the group controller panel, and it has been tested
under field conditions. We have also tested it at the research laboratory by
connecting it to an elevator simulator that simulates a heavy load: 8 cars, 32
floors, all elevator cars moving constantly. All of this has proved to be a rather
easy task for our system. There was no problem with either the serial interface,
the graphics or the logging of the monitored data. Under the heaviest load
conditions, we could log into the system and run other programs, even

https://secure2.linuxjournal.com/ljarchive/LJ/041/0133l1.html

recompile the application, without any effect on performance. Response was
instantaneous, and it was evident that this platform can handle much more
demanding applications.

We have tested the power failure and recovery capabilities and checked that
the system can withstand almost any abuse.

As a future development, we are considering a system with a boot/root file
system in ROM and a read-only, mounted hard disk for the large applications
and libraries. Since we want to put a normal Linux file system on the hard disk,
we need to develop kernel patches that let the system boot from a small root
file system, and switch parts of it (/bin, /lib, etc.) during initialization.

Eventually, we would like to extend our tests to industrial grade PC systems and
check the usability of Linux for continuous operation under strict
environmental conditions. This would open the way for moving more critical
monitoring, security and control tasks to the Linux/PC platform.

Conclusions

Linux is a viable and attractive platform for manufacturers who need a stable
system that is “theirs to keep” for many years to come. Instead of developing in-
house, custom-made systems at large cost or buying proprietary systems and
leaving themselves at the mercy of the vendor, they can now choose Linux.

Linux, with the support of the Internet developer community and with
guaranteed and affordable support from more and more commercial ventures,
is seen by many as an ideal, software development platform. In our experience,
it can also become an excellent deployment platform for computer-controlled
hardware systems.

We are looking forward to the further expansion of our Linux business, and we
hope the experience we gather will enable us to pay back a small part of our
debt to the Linux community.

Sandor Markon graduated from the Technical University of Budapest and
received a PhD in Electrical Engineering from Kyoto University. He has worked
for Fujitec of Osaka, Japan since 1979 doing computer applications for elevator
control. Present interests include neural networks, reinforcement learning,
Internet programming with Java and industrial applications of free software. He
can be reached via e-mail at markon@rd.fujitec.co.jp.

Kenji Sasaki graduated from Kyoto University, Faculty of Engineering. With
Fujitec since 1976, he has been working mostly in control, systems

mailto:markon@rd.fujitec.co.jp

development and communications. Present interests include Java, Linux and
the Internet. He can be reached via e-mail at kjsasaki@rd.fujitec.co.jp.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

mailto:kjsasaki@rd.fujitec.co.jp
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/041/toc041.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

New Products

Amy Kukuk

Issue #41, September 1997

OpenLinux Standard 1.1, TriTeal CDE for Linux, Diffpack and more.

OpenLinux Standard 1.1

Caldera Inc. announced the release of OpenLinux Standard 1.1. OpenLinux
Stardard 1.1 is based on the new Linux kernel 2.0.29 and includes the Netscape
FastTrack Server 2.0.1, Netscape Navigator 3.01 Gold, Sun Microsystem's Java
Development Toolkit, Star Division's StarOffice 3.1 and Caldera's OpenDOS.
OpenLinux is Caldera's platform for extending local area networks to the home,
branch office, remote user and the Internet. All services on the local network
can be extended around-the-corner or the world, across a high-speed
connection by adding a frame relay or ISDN commodity card to Intel-based PCs.
Suggested retail price for OpenLinux Standard is $399US.

Contact: Caldera Inc., 633 South 550 East, Provo, Utah, Phone: 801-229-1675,
Fax: 801-229-1579, E-mail: info@caldera.com, URL: http://www.caldera.com/.

TriTeal CDE for Linux

Red Hat Software announced TriTeal CDE for Linux. Red Hat Software and
TriTeal Corporation teamed up to bring you this common desktop
environment. TriTeal provides users with a graphical interface to access both
local and remote systems. Red Hat's TriTeal CDE for Linux is available in two
versions. The Client Edition gives you everything you need to operate a
complete licensed copy of the CDE desktop, incluidng the Motif 1.2.5 shared
libraries. The Developer's Edition allows you to perform all functions of the
Client Edition and includes a copy of OSF Motif version 1.2.5. CDE is an RPM-
based product and installs easily on Red Hat and other RPM-based Linux
systems. You can order on-line at http://www.redhat.com/ or call 1-888-
REDHAT1.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

Contact: Red Hat Software, Inc., 3203 Yorktown Avenue, Suite 123, Durham, Nc
27713, Phone: 800-546-7274, Fax: 919-572-6726, E-mail: info@redhat.com, URL:
http://www.redhat.com/.

Diffpack

Numerical Objects announced the release of version 2.6.1 of Diffpack, an
object-oriented C++ numerical library for building simulation software. The
release covers the most common Unix platforms including Linux. Diffpack is a
general purpose library for solving partial differential equations. It contains
basic numerical entities, linear solvers, preconditioners and more. A stripped
public domain source code version of Diffpack, restricted to academic use and
evaluation, is available at http://www.nobjects.com/. The cost of a single user
commercial license is $9000US.

Contact: Numerical Objects AS, Forskningsveien 1, P.O. Box 124 Blindern,
N-0314 Oslo, Norway, Phone: 47-22-06-73-00, Fax: 47-22-06-73-51, E-mail:
sea@nobjects.com, URL: http://www.nobjects.com/.

RIPmaster 2.0 for Linux

Advanced Systems Research announced the release of the first on-line
graphical system to integrate with the Internet, while providing an on-line
graphics protocol. RIPmaster 2.0 for Linux is a graphically based system using
the extensive RIPscrip 3.0 protocol which enables the creation of graphics and
multimedia systems. It runs under Linux on any supported hardware platform,
including the DEC Alpha workstation, and supports a wide range of software.
RIPmaster 2.0 is available for free. The RIPmaster demo system, RIPtel 3.0.2 and
additional tools can be downloaded from http://www.telegrafix.com/asr/.

Contact: Advanced Systems Research, 2348 Appaloosa, West Linn. OR 97068,
Phone: 503-650-5388, E-mail: amcnamee@cybernw.com, URL: http://
www.telegrafix.com/asr/.

Ten X CD-ROM Server

Ten X Technology announced the 21 CD capacity TenXpert-4/21r. The
TenXpert-4/21r offers 2GB of hard-disk cache with integrated server and five,
8x-speed, 4 CD microchangers and one 6x-speed read/4s-speed record CD
recorder in a lockable tower. TenXpert has a plug-and-play design and
performance is delivered by the large hard disk cache. Recorded CDs are
immediately and automatically available to every user. The cost of the
TenXpert-4/21r is $7245US.

Contact: Ten X Technology, Inc., 13091 Pond Springs Road, Suite B-200, Austin,
TX, 78729, Phone: 800-922-9050, Fax: 512-918-9495, E-mail: info@tenx.com,
URL: http://www.tenx.com/.

Clustor 1.1

Active Tools, Inc. announced the release of Clustor 1.1, a software tool for
distributing and managing computationally intensive tasks. Clustor simplifies
parametric executions—running the same application numerous times with
different input parameters. Jobs can be distributed over a local area network or
over the Internet. Clustor provides new features for load monitoring and
resource sharing. Clustor 1.1 provides a graphical user interface for all phases
of executing jobs on a network of computers. Clustor 1.1 for Linux is priced at
$495US and $99US for additional computational nodes. Academic discount of
40% is available to academic institutions for non-commercial use.

Contact: Active Tools, 246 First Street, Suite 310, San Fransisco, CA, 94105,
Phone: 415 882 7062, E-mail: info@activetools.com, URL: http://
www.activetools.com/.

XMove 4.0 for Linux

Future Technologies and Siemens Austria ported the XMove 4.0 from RISC
stations to Linux. XMove allows control of real-time processing using only a
mouse click. XMove is software for designing, prototyping and testing the
graphical user interface of a software system dealing with dynamically changing
values. Xmove 4.0 for Linux, includes an Editor (Xmvdraw) and a complete
library including the Motif Meter Object.

Contact: Future Technologies, Via Cairoli 1, Pordenone, Italy, Phone:
39-434-20-91-07, Fax: 39-434-20-95-10, E-mail: futuretg@tin.it, URL: http://
www.vol.it/futuretec/.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/041/toc041.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

System Administration

Jan Rooijackers

Issue #41, September 1997

How to set up, use and maintain disk quotas for your Linux system.

Disk usage is always an issue, whether you are using Linux, DOS or any other
Operating System. After discovering the disk is full the first thing to do is find
out what files are taking up the most disk space and who owns those files.
There are three different commands that you can use to obtain this
information—df, du and ls (for more information, look in the man pages).

On using one of these commands, you find that one or more users have more
disk space allocated than you do. One way for a System Administrator to avoid
this kind of problem is to implement a disk quota for each user.

The Start

Before implementing the quota utility, you must have a kernel that supports it.
Quota is supported by default in the Linux kernel since version 2.0. If you are
not already running a 2.0.x kernel, you must install the quota package and
create a new kernel that supports it.

Making Quota Available

To make quota available for a certain file system, you must edit the /etc/fstab
file and add entries for usrquota and/or grpquota.

My fstab file is shown in Listing 1. The word usrquota is an option from the
fstab that turns quota on for users on this device. You can also use grpquota to
turn on grpquota for this device or use a combination of both.

Before you can use the quota package, the command quotacheck must be run
to check the specified file system for any previously set quotas. If this is the first
time you've used the command and no quotas are found, it creates a

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1
https://secure2.linuxjournal.com/ljarchive/LJ/041/0197l1.html

quota.user or quota.group file or files in the root of the specified file system.
Which files are created is dependent on which options are specified in the fstab
file. The quotacheck command runs each time you boot the system.

The first time I ran quotacheck on my machine the output looked like this:

quotacheck -v /dev/hda3
Scanning /dev/hda3 [/home] done
Checked 50 directories and 331 files
Using quotafile /home/quota.user

Now that quotacheck has run, you can turn on quota for your system by using
the command quotaon. This command has different options. The easiest one
for first time use is:

quotaon -av

This command installs quota on all file systems marked read/write in the etc/
fstab file and also displays a message showing which file systems have quota

turned on. Here's another example:
newroom:~# quotaon -av
/dev/hda3: user quotas turned on
newroom:~#

To run quotaon each time you boot your machine, add the following line to the
/etc/rc.d/rc.local file:

quotaon -avug

The opposite of quotaon is quotaoff, and it has the same options. This
command turns quota off for a file system.

Giving Quotas

Now it is time to specify a quota for the users or groups. The easiest thing to do
is to give everyone the same amount of disk space.

To get an indication of how much each user is currently using, use the
command repquota. This command displays a summary of the disc usage and
quotas for the specified file systems. For each user the current number of files
and the amount of space (in kilobytes) is printed, along with any quotas created
with edquota (see explanation of this command below). An example of this
summary is shown in Listing 2.

The command used to set disk quotas is called edquota. This command brings
up the quota editor which is used in the same way as the commands described
above. The -u option is used to specify a user quota, and the -g option is used
to specify a group quota. When you use edquota with one of the options, a
temporary file is created containing an ASCII representation of the current disk

https://secure2.linuxjournal.com/ljarchive/LJ/041/0197l2.html

quotas for that user or group, and the editor is invoked for this file. You can use
the editor to modify or add new quotas and so on. Upon exiting the editor,
edquota reads the temporary file and modifies the binary quota files to reflect
the changes. When in the editor, you should only edit numbers that follow an =
sign. For each file system using quota, two lines are put in the temporary file:

Quotas for user dsnjaro:
/dev/hda3: blocks in use: 49, limits (soft = 0, hard = 0)
 inodes in use: 30, limits (soft = 0, hard = 0)

The first line contains the number of blocks in use and how many blocks a user
or group can allocate. The second line contains the number of inodes in use
and how many can be allocated. The soft parameter specifies a “soft limit”—
people or groups can exceed this limit for a certain period of time (set by the -t
option). The hard parameter specifies a “hard limit”—the absolute maximum
amount of space a user or group can have.

If you don't wish to set a quota for a particular user or group, assign the value 0
to both soft and hard. This is a better documented solution than leaving this
user or group out of the user.quota or group.quota file.

To change the hard and soft limits, use the edquota command with the -t
option set. Using the editor, you can specify these time limits in either days,
hours, minutes or seconds. If you set the hard limit equal to the soft limit, users
or groups are not allowed to have more than this value.

To give everyone on your system the same quota, use the -p option to define a
prototype user. To give everyone the same quota as this prototype user, give
the command:

edquota -p <uid of the prototype> *

All commands described in this article are only for use by the system
administrator (almost every command has to read all directories and their files)
for security reasons.

How Users Can Check Their Quotas

Every user or group can check their disk quota with the command quota. This
command produces a report that contains information for all file systems listed
in the /etc/fstab. Give the command quota -u (for user quota) or quota -g (for
group quota) or a combination to obtain this information. If no quotas are set,
the command quota -u results in the following output:

Disk quotas for dsnjaro (uid 503):none

If quotas have been set, the output looks like:

Disk quotas for user dsnjaro (uid 503):
File system blocks quota limit grace files quota limit grace
/dev/hda3 49 100 110 30 0 0

Only the system administrator can use either of the commands:
quota -u <
quota <-g <group-id>

Quota is working very well for me in my work, where there are approximately
300 users on our system.

Jan Rooijackers works at Ericsson Data Netherlands as an Information Systems
Engineer. His first contact with Unix was in 1991 and with Linux in 1994. He
likes to spend time with his family and his PCs. He can be reached via e-mail at
Jan.Rooijackers@dsn.ericsson.se.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/041/toc041.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

The sysctl Interface

Alessandro Rubini

Issue #41, September 1997

A look at the sysctl system call that gives you the ability to fine tune kernel
parameters.

The sysctl system call is an interesting feature of the Linux kernel; it is quite
unique in the Unix world. The system call exports the ability to fine-tune kernel
parameters and is tightly bound to the /proc file system, a simpler, file-based
interface that can be used to perform the same tasks available by means of the
system call. sysctl appeared in kernel 1.3.57 and has been fully supported ever
since. This article explains how to use sysctl with any kernel between 2.0.0 and
2.1.35.

When running Unix kernels, system administrators often need to fine-tune
some low-level features according to their specific needs. Usually, system
tailoring requires you rebuilding the kernel image and rebooting the computer.
These tasks are lengthy ones which require good skills and a little luck to be
successfully completed. Linux developers diverged from this approach and
chose to implement variable parameters in place of hardwired constants; run-
time configuration can be performed by using the sysctl system call or more
easily by exploiting the /proc file system. The internals of sysctl are designed
not only to read and modify configuration parameters, but also to support a
dynamic set of such variables. In other words, the module writer can insert new
entries in the sysctl tree and allow run-time configuration of driver features.

The /proc Interface to System Control

Most Linux users are familiar with the /proc file system. In short, the file system
can be considered a gateway to kernel internals: its files are entry points to
certain kernel information. Such information is usually exchanged in textual
form to ease interactive use, although the exchange can involve binary data
when required. The typical example of a binary /proc file is /proc/kcore, a core
file that represents the current kernel. Thus, you can execute the command:

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

gdb /usr/src/linux/vmlinux /proc/kcore

and peek into your running kernel. Naturally, gdb on /proc/kcore gives much
better results if vmlinux has been compiled using the -g compiler option.

Most of the /proc files are read-only: writing to them has no effect. This applies,
for instance, to /proc/interrupts, /proc/ioports, /proc/net/route and all the other
information nodes. The directory /proc/sys, on the other hand, behaves
differently; it is the root of a file tree related to system control. Each
subdirectory in /proc/sys deals with a kernel subsystem like net/ and vm/, while
the kernel/ subdirectory is special as it includes kernel-wide parameters, like
the file kernel/hostname.

Each sysctl file includes numeric or string values—sometimes a single value,
sometimes an array of them. For example, if you go to the /proc/sys directory
and give the command:

grep . kernel/*

kernel 2.1.32 returns data similar to the following:

kernel/ctrl-alt-del:0
kernel/domainname:systemy.it
kernel/file-max:1024
kernel/file-nr:128
kernel/hostname:morgana
kernel/inode-max:3072
kernel/inode-nr:384 263
kernel/osrelease:2.1.32
kernel/ostype:Linux
kernel/panic:0nn
kernel/printk:6 4 1 7
kernel/securelevel:0
kernel/version:#9 Mon Apr 7 23:08:18 MET DST 1997

It's worth stressing that reading /proc items with less doesn't work, because
they appear as zero-length files to the stat system call, and less checks the
attributes of the file before reading it. The inaccuracy of stat is a feature of /
proc, rather than a bug. It's a saving in human resources (in writing code), and
kernel size (in carrying the code around). stat information is completely
irrelevant for most files, as cat, grep and all the other tools work fine. If you
really need to use less to look at the contents of a /proc file, you can resort to:

cat

If you want to change system parameters, all you need to do is write the new
values to the correct file in /proc/sys. If the file contains an array of values, they
will be overwritten in order. Let's look at the kernel/printk file as an example.
printk was first introduced in kernel version 2.1.32. The four numbers in /proc/
sys/kernel/printk control the “verbosity” level of the printk kernel function. The
first number in the array is console_loglevel: kernel messages with priority less
than or equal to the specified value will be printed to the system console (i.e.,

the active virtual console, unless you've changed it). This parameter doesn't
affect the operation of klogd, which receives all the messages in any case. The
following commands show how to change the log level:

cat kernel/printk
6 4 1 7
echo 8 > kernel/printk
cat kernel/printk
8 4 1 7

A level of 8 corresponds to debug messages, which are not printed on the
console by default. The example session shown above changes the default
behaviour so that every message, including the debug ones, are printed.

Similarly, you can change the host name by writing the new value to /proc/
kernel/hostname—a useful feature if the hostname command is not available.

Using the System Call

Even though the /proc file system is a great resource, it is not always available
in the kernel. Since it's not vital to system operation, there are times when you
choose to leave it out of the kernel image or simply don't mount it. For
example, when building an embedded system, saving 40 to 50KB can be
advantageous. Also, if you are concerned about security, you may decide to
hide system information by leaving /proc unmounted.

The system call interface to kernel tuning, namely sysctl, is an alternative way to
peek into configurable parameters and modify them. One advantage of sysctl is
that it's faster, as no fork/exec is involved (i.e., no external programs are
spawned) nor is any directory lookup. However, unless you run an ancient
platform, the performance savings are irrelevant.

To use the system call in a C program, the header file sys/sysctl.h must be
included; it declares the sysctl function as:

int sysctl (int *name, int nlen, void *oldval,
 size_t *oldlenp, void *newval, size_t newlen);

If your standard library is not up to date, the sysctl function will neither be
prototyped in the headers nor defined in the library. I don't know exactly when
the library function was first introduced, but I do know libc-5.0 does not have it,
while libc-5.3 does. If you have an old library you must invoke the system call
directly, using code such as:

#include <linux/unistd.h>
#include <linux/sysctl.h>
/* now "_sysctl(struct __sysctl_args *args)"
 can be called */
_syscall1(int, _sysctl, struct __sysctl_args *,
 args);

The system call gets a single argument instead of six of them, and the
mismatch in the prototypes is solved by prepending an underscore to the name
of the system call. Therefore, the system call is _sysctl and gets one argument,
while the library function is sysctl and gets six arguments. The sample code
introduced in this article uses the library function.

The six arguments of the sysctl library function have the following meaning:

1. name points to an array of integers: each of the integer values identifies a
sysctl item, either a directory or a leaf node file. The symbolic names for
such values are defined in the file linux/sysctl.h.

2. nlen states how many integer numbers are listed in the array name. To
reach a particular entry you need to specify the path through the
subdirectories, so you need to specify the length of this path.

3. oldval is a pointer to a data buffer where the old value of the sysctl item
must be stored. If it is NULL, the system call won't return values to user
space.

4. oldlenp points to an integer number stating the length of the oldval

buffer. The system call changes the value to reflect how much data has
been written, which can be less than the buffer length.

5. newval points to a data buffer hosting replacement data. The kernel will
read this buffer to change the sysctl entry being acted upon. If it is NULL,
the kernel value is not changed.

6. newlen is the length of newval. The kernel will read no more than newlen

bytes from newval.

Now, let's write some C code to access the four parameters contained in /proc/
sys/kernel/printk. The numeric name of the file is KERN_PRINTK, within the
directory CTL_KERN/ (both symbols are defined in linux/sysctl.h). The code
shown in Listing 1, pkparms.c, is the complete program to access these values.

Changing sysctl values is similar to reading them—just use newval and newlen.
A program similar to pkparms.c can be used to change the console log level,
the first number in kernel/printk. The program is called setlevel.c, and the code
at its core looks like:

int newval[1];
int newlen = sizeof(newval);
/* assign newval[0] */
error = sysctl (name, namelen, NULL /* oldval */,
 0 /* len */, newval, newlen);

The program overwrites only the first sizeof(int) bytes of the kernel entry, which
is exactly what we want.

https://secure2.linuxjournal.com/ljarchive/LJ/041/2365l1.html

Please remember that the printk parameters are not exported to sysctl in
version 2.0 of the kernel. The programs won't compile under 2.0 due to the
missing KERN_PRINTK symbol; also, if you compile either of them against later
versions and then run under 2.0, you'll get an error when invoking sysctl.

The source files for pkparms.c, setlevel.c and hname.c (which will be introduced
in a while) are in the 2365.tgz1 file.

A simple run of the two programs introduced above looks like the following:

./pkparms
len is 16 bytes
6 4 1 7
cat /proc/sys/kernel/printk
6 4 1 7
./setlevel 8
./pkparms
len is 16 bytes
8 4 1 7

If you run kernel 2.0, don't despair—the files acting on kernel/printk are just
samples, and the same code can be used to access any sysctl item available in
2.0 kernels with minimal modifications.

On the same ftp site you'll also find hname.c, a bare-bones hostname

command based on sysctl. The source works with the 2.0 kernels and
demonstrates how to invoke the system call with no library support, since my
Linux-2.0 runs on a libc-5.0-based PC.

A Quick Look at Some sysctl Entries

Although low-level, the tunable parameters of the kernel are very interesting to
tweak and can help optimize system performance for the different
environments where Linux is used.

The following list is an overview of some relevant /kernel and /vm files in /proc/
sys. (This information applies to all kernels from 2.0 through 2.1.35.)

• kernel/panic - The integer value is the number of seconds the system will
wait before automatic reboot in case of system panic. A value of 0 means
“disabled”. Automatic reboot is an interesting feature to turn on for
unattended systems. The command-line option panic=value can be used
to set this parameter at boot time.

• kernel/file-max - The maximum number of open files in the system. file-nr,
on the other hand, is the per-process maximum and can't be modified,
because it is constrained by the hardware page size. Similar entries exist
for the inodes: a system-wide entry and an immutable per-process one.

Servers with many processes and many open files might benefit by
increasing the value of these two entries.

• kernel/securelevel - This is a hook for security features in the system. The
securelevel file is currently read-only even for root, so it can only be
changed by program code (e.g., modules). Only the EXT2 file system uses
securelevel—it refuses to change file flags (like immutable and append-

only) if securelevel is greater than 0. This means that a kernel,
precompiled with a non-zero securelevel and no support for modules, can
be used to protect precious files from corruption in case of network
intrusions. But stay tuned for new features of securelevel.

• vm/freepages - Contains three numbers, all counts of free pages. The first
number is the minimum free space in the system. Free pages are needed
to fulfill atomic allocation requests, like incoming network packets. The
second number is the level at which to start heavy swapping, and the third
is the level to start light swapping. A network server with high bandwidth
benefits from higher numbers in order to avoid dropping packets due to
free memory shortage. By default, one percent of the memory is kept
free.

• vm/bdflush - The numbers in this file can fine-tune the behaviour of the
buffer cache. They are documented in fs/buffer.c.

• vm/kswapd - This file exists in all of the 2.0.x kernels, but has been
removed in 2.1.33 as not useful. It can safely be ignored.

• vm/swapctl - This big file encloses all the parameters used in fine-tuning
the swapping algorithms. The fields are listed in include/linux/swapctl.h
and are used in mm/swap.c.

The Programming Interface: Plugging New Features

Module writers can easily add their own tunable features to /proc/sys by using
the programming interface to extend the control tree. The kernel exports to
modules the following two functions:

struct ctl_table_header *
 register_sysctl_table(ctl_table * table,
 int insert_at_head);
void unregister_sysctl_table(
 struct ctl_table_header * table);

The former function is used to register a “table” of entries and returns a token,
which is used by the latter function to detach (unregister) your table. The
argument insert_at_head tells whether the new table must be inserted before
or after the other ones, and you can easily ignore the issue and specify 0, which
means “not at head”.

What is the ctl_table type? It is a structure made up of the following fields:

• int ctl_name - This is a numeric ID, unique within each table.
• const char *procname - If the entry must be visible through /proc, this is

the corresponding name.
• void *data - The pointer to data. For example, it will point to an integer

value for integer items.
• int maxlen - The size of the data pointed to by the previous field; for

example, sizeof(int).
• mode_t mode - The mode of the file. Directories should have the

executable bit turned on (e.g., 0555 octal).
• ctl_table *child - For directories, the child table. For leaf nodes, NULL.
• proc_handler *proc_handler - The handler is in charge of performing any

read/write spawned by /proc files. If the item has no procname, this field
is not used.

• ctl_handler *strategy - This handler reads/writes data when the system
call is used.

• struct proc_dir_entry *de - Used internally.
• void *extra1, *extra2 - These fields have been introduced in version 1.3.69

and are used to specify extra information for specific handlers. The kernel
has an handler for integer vectors, for example, that uses the extra fields
to be notified about the allowable minimum and maximum allowed
values for each number in the array.

Well, the previous list may have scared most readers. Therefore, I won't show
the prototypes for the handling functions and will instead switch directly to
some sample code. Writing code is much easier than understanding it, because
you can start by copying lines from existing files. The resulting code will fall
under the GPL—of course, I don't see that as a disadvantage.

Let's write a module with two integer parameters, called ontime and offtime.
The module will busy-loop for a few timer ticks and sleep for a few more; the
parameters control the duration of each state. Yes, this is silly, but it is the
simplest hardware-independent example I could imagine.

The parameters will be put in /proc/sys/kernel/busy, a new directory. To this
end, we need to register a tree like the one shown in Figure 1. The /kernel
directory won't be created by register_sysctl_table, because it already exists.
Also, it won't be deleted at unregister time, because it still has active child files;
thus, by specifying the whole tree of directories you can add files to every
directory within /proc/sys.

Listing 2 is the interesting part of busy.c, which does all the work related to
sysctl. The trick here is leaving all the hard work to proc_dointvec and
sysctl_intvec. These handlers are exported only by version 2.1.8 and later of the
kernel, so you need to copy them into your module (or implement something
similar) when compiling for older kernels.

I won't show the code related to busy looping here, because it is completely out
of the scope of this article. Once you have downloaded the source from the FTP
site1, it can be compiled on your own system. It works with both version 2.0
and 2.1 on the Intel, Alpha and SPARC platforms.

Probing Further

Despite the usefulness of sysctl, it's hard to find documentation. This is not a
concern for system programmers, who are accustomed to peeking at the
source code to extract information. The main entry points to the sysctl internals
are kernel/sysctl.c and net/sysctl_net.c. Most items in the sysctl tables act on
solely on strings or arrays of integers. So to search through the whole source
tree for an item, you will end up using the data field as the argument to grep. I
see no shortcut to this method.

As an example, let's trace the meaning of ip_log_martians in /proc/sys/net/ipv4.
You'll first find that sysctl_net.c refers to ipv4_table, which in turn is exported by
sysctl_net_ipv4.c. This file in turn includes the following entry in its table:

{NET_IPV4_LOG_MARTIANS, "ip_log_martians",
&ipv4_config.log_martians, sizeof(int), 0644,
NULL, &proc_dointvec},

https://secure2.linuxjournal.com/ljarchive/LJ/041/2365l2.html

Understanding the role of our control file, therefore, reduces to looking for the
field ipv4config.log_martians throughout the sources. Some grepping will show
that the field is used to control verbose reporting (via printk) of erroneous
packets received by this host.

Unfortunately, many system administrators are not programmers and need
other sources of information. For their benefit, kernel developers sometimes
write a little documentation as a break from writing code, and this
documentation is distributed with the kernel source. The bad news is that,
sysctl is quite recent in design, and such extra documentation is almost
nonexistent.

The file Documentation/networking/Configurable is a short introduction to
sysctl (much shorter than this article) and points to net/TUNABLE, which in turn
is a huge list of configurable parameters in the network subtree. Unfortunately
the description of each item is quite technical, so that people who don't know
the details of networking can't proficiently tune network parameters. As I'm
writing, this file is the only source of information about system control, if you
don't count C source files.

Alessandro Rubini reads e-mail as rubini@linux.it and enjoys breeding oaks and
playing with kernel code. He is currently looking for a job in either field.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/041/toc041.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Best of Technical Support

Various

Issue #41, September 1997

Our experts answer your technical questions.

The .plan File

What are the .plan and .project files read by the finger command and what
should they contain? —Chris MasonSlackware 2.0.29

In the good old days before the Web, there were no home pages. Instead, if I
wanted to find out more about someone, I would “finger” them. The finger
command asks the server to display information about a user, including the
contents of the user's .plan and .project files. You can put any information you
wish in these files: your name, e-mail address, fax and phone numbers or
favorite sayings.

Note that many system administrators consider the finger command to be a
potential security risk and have turned it off, so don't be surprised if you
“finger” someone and receive a message along the lines of “access denied”.
Also, many implementations of finger read only the .plan file. —Vince Waldon
vwaldon@skynet.uah.ualberta.ca

Linux and Pentiums

I have a PC with an Intel Pentium 150. Will Linux run on it? I've heard it runs on
a 386 or a 486 but has trouble with certain IBMs—I'm not sure which ones. —
Noah Roberts

You should have no problem running Linux on the machine you describe. Early
versions of the Linux kernel were unable to support true IBM machines that
used the microchannel architecture or MCA (the PS\2 line). That's probably the
IBM computer referred to. —Vince Waldon vwaldon@skynet.uah.ualberta.ca

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

Spinning Hard Drive

My hard drive spins up and spins down constantly. There is a kernel patch
called no_idle on Sunsite [http://sunsite.unc.edu/] to fix this problem, but when
I attempt to apply the patch I get a reject file. It seems that the Makefile for the
disk drivers has now been created, and as a result, the patch does not apply
correctly. I am running 2.0.0. I would like to know if there is something else I
could do to stop the spinning. I would appreciate any help. —John
BarnitzSlackware 3.1

Most likely you need to find the hdparm package and use it to set the spin
down times. I know it can do this for IDE drives. If it's not part of your
distribution, you can find it on Sunsite. —Donnie Barnes, Red Hat Software
redhat@redhat.com

SCSI Drivers

Are there any drivers that provide SCSI support on the motherboard? —Ryan
Red Hat 4.1

That depends on the type of SCSI you wish to use. You can check the hardware
compatibility lists at http://www.redhat.com/. —Donnie Barnes, Red Hat
Software redhat@redhat.com

Non-English Keyboard Characters

After installing Linux, I noticed I am missing an option available in MS Windows:
the US-International keyboard layout. This layout lets anyone with a US
keyboard type the special punctuation needed for foreign languages. I live in
Puerto Rico, and most, if not all, keyboards sold here are US versions. Since I
write mostly in Spanish, I am interested in learning how to make a keymap that
emulates Windows' US-International layout. Is there any information about the
subject or any already-made keymap file that fits the job? —Carlos M.
Fernandez Red Hat 4.1

There may indeed be a keyboard mapping that fits your keyboard. If not, you
will have to take one that is close to your desired arrangement and modify it.

You should obtain the kbd package from ftp://sunsite.unc.edu/pub/Linux/
system/keyboards/kbd-0.98.tar.gz. It contains tools, documentation and
examples that will assist you in your remapping project. It also contains a file
called kbd.FAQ, which contains answers to frequently asked questions about
the operation of the keyboard under Linux. —Chad Robinson, BRT Technical
Services Corporation chadr@brttech.com

Configuring su for Security

I have a problem with hackers and one security hole is the command su. I have
several users on my system. While I don't want to eliminate the capability of
these users to change to other IDs, I do want to eliminate the capability to use
su to change to root for all except one or two users. Is this possible? —Are Tysl
Slackware 3.1

You may be missing a handy program called sudo, which you can obtain from
your nearest Sunsite mirror. This program allows you to configure su actions
for each user based on who the user is and what you wish him to be able to
access.

If that does not meet your goal, why not fall back to the standard Unix security
functions? Create a new group called su. Change the group on /bin/su from bin
to su. The permissions are most likely 4755 (-rwsr-xr-x), which means anybody
can execute it and the program will execute as root.bin.

You can then change the permissions of /bin/su. Try changing them to 4750 (-
rwsr-x---), which allows root or any user in the su group to execute it. Then you
can put those users you wish to have su privileges in the su group. —Chad
Robinson, BRT Technical Services Corporation chadr@brttech.com

Man Page Display

How do I use man? For example, when I enter:

man ls

I get a blank screen with a weird message at the bottom of the screen—
something like 1/1. Whatever I enter, it beeps at me. —Josh Gray Slackware 3.2

Check whether there are any files in the /usr/man/manx directory (where x is a
number, usually from 1 to 8). You should find several different files with names
like gpm.1. Each of these files is a man page. Whenever you use the man

command, you get a processed version of the file corresponding to the
command specified (for the ls command, it is the ls.x file). For this file to be
processed, the groff utility must be installed. groff is usually found in the /usr/
bin directory. —Mario de Mello Bittencourt Neto, WebSlave
mneto@buriti.com.br

Setting Up Swap Space

When I installed Linux, I didn't set up a swap space. I have since created a swap
file but I have to enter:

swapon /dev/hda5

every time I boot, and I can do it only as root. Can I make this simpler? —Josh
Gray Slackware 3.2

Slackware puts entries to automatically mount swap partitions (if they exist) in
your rc script files. All you need to do is tell those files that your swap partition
exists and is available for use. To do that, put a line in the /etc/fstab file like the
following:

/dev/hda5 swap swap defaults 1 1

This tells the system to set up a swap space from /dev/hda5 with the default
settings for a swap partition. This entry is normally created by the setup scripts
when you install Slackware, and is the missing item that prevents your swap
area from being initialized with each boot. —Chad Robinson, BRT Technical
Services Corporation chadr@brttech.com

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/041/toc041.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

	Features
	News & Articles
	Reviews
	WWWsmith
	Columns
	Robocar: Unmanned Ground Robotics
	Kerry Kruempelstaedter
	The Mechanics
	The Electrical System
	Actuators
	Sensors
	Computers
	Software Architecture
	Navigation Algorithms
	Conclusion

	Linux at Holt Public Schools
	Mark Lachniet

	A Linux-based Lab for Operating Systems and Network Courses
	Richard Chapman
	W. Homer Carlisle
	Teaching Systems Programming
	Lab Configuration
	Expansion
	Systems Administration Course
	Security Concerns
	Lessons Learned

	Using Linux in a Training Environment
	B. Scott Burkett
	Overview of Requirements
	Implementation
	The Processor
	Memory
	The SCSI Controller
	The Hard Disk
	The CD-ROM Unit
	Streaming SCSI DAT Drive
	The Network Interface Card
	The Video Card
	The Printer
	Back to Business
	Benefits/Drawbacks
	The Price of the Operating System
	The Price of the Hardware
	The Price of Tools and Add on Packages
	Lack of Technical Support
	Lack of Commercial Solutions
	Implementing a Linux Solution
	Getting a Game Plan Together
	Presenting your Solution
	Conclusion

	Programming with the XForms Library
	Thor Sigvaldason
	Review of Our Progress So Far
	A Look at xgtsim2
	New Items
	Using Goodies
	On Your Own

	Packet Radio Under Linux
	Jeff Tranter
	What Is Ham Radio?
	What is Packet Radio?
	What Kind of Packet Radio Hardware Do You
Need?
	What Does Linux Offer?
	Back to My Story
	Conclusions
	Acknowledgments

	Product Reviews: Empress RDBMS and Just Logic/SQL RDBMS
	Rob Wehrli
	Just Logic
	Conclusions

	Megahedron—A 3D Graphics Environment
	Michael J. Hammel
	Installation
	Documentation
	Features
	SMPL
	Modeling Features
	Programmable Shading
	The Quick Tour
	Summary

	Solid Desktop 2.2 for Linux
	Bradley J. Willson

	Beginning Linux Programming
	J. Mark Shacklette

	Linux Configuration and Installation, Second Edition
	Harvey Friedman

	Building an ISP Using Linux and an Intranet
	Eric Harlow
	Setting up PPP
	Connecting Other Machines to Your Server
	Test Your Windows 95 Client
	Multiport Serial Card for Dial-up Access
	Initializing Serial Ports
	Modifying the gettys File
	Dial-up Shell Access for Users
	Keeping the Connection Established
	Fax Services and Seamless Windows 95
Dial-up
	E-mail
	Web Server

	Speaking SQL
	Reuven M. Lerner
	Basic SQL
	Using SQL from Perl
	Using MySQL from a CGI program

	Letters to the Editor
	Various
	Misspelling
	More Novice Articles
	More Technical Articles
	Keyboard Typos
	Benchmark Table
	Think Linux
	Push Media
	Perfect Box
	Wireless Solution
	Wabi Article
	Security and Networking
	Progress on Linux

	Education
	Marjorie Richardson
	Fall Comdex
	Reader's Choice
	Buyer's Guide
	Linux Speaker's Bureau
	GLUE Announcement

	Atlanta Linux Showcase Report
	Phil Hughes
	Todd M. Shrider
	The Roast
	The Future
	More on ALS

	Linux Grows Up
	Phil Hughes

	Introduction to Named Pipes
	Andy Vaught
	Pipe Madness
	Command Substitution

	Linux for Embedded Systems
	Sandor Markon
	Kenji Sasaki
	The Target: Elevator Monitoring
Equipment
	Advantages and Problems of Using Linux for
Embedded Systems
	The Linux Monitoring System
	File System, Installation, Recovery
	Performance and Further Developments
	Conclusions

	New Products
	Amy Kukuk
	OpenLinux Standard 1.1
	TriTeal CDE for Linux
	Diffpack
	RIPmaster 2.0 for Linux
	Ten X CD-ROM Server
	Clustor 1.1
	XMove 4.0 for Linux

	System Administration
	Jan Rooijackers
	The Start
	Making Quota Available
	Giving Quotas
	How Users Can Check Their Quotas

	The sysctl Interface
	Alessandro Rubini
	The /proc Interface to System Control
	Using the System Call
	A Quick Look at Some sysctl Entries
	The Programming Interface: Plugging New
Features
	Probing Further

	Best of Technical Support
	Various
	The .plan File
	Linux and Pentiums
	Spinning Hard Drive
	SCSI Drivers
	Non-English Keyboard Characters
	Configuring su for Security
	Man Page Display
	Setting Up Swap Space

